scholarly journals Analysis of estuarine flood levels based on numerical modelling. The Douro river estuary case study

Author(s):  
Stênio De Sousa Venâncio ◽  
José Luís Pinho ◽  
José Manuel Vieira ◽  
Paulo Avilez-Valente ◽  
Isabel Iglesias

Estuarine hydrodynamics present intermittent and complex circulation patterns. In this context, from the point of view of the coastal management associated with flood risks in riverine areas, numerical models allow predicting scenarios under specific hypotheses. This work simulates flood events occurring in the Douro river estuary recurring to numerical modelling tools. This estuary, located in the northern region of Portugal, periodically suffered severe flooding, with the associated losses and damages for the local protected landscape areas and hydraulic structures. The occurrence of these events justify the importance of a complete characterization of the areas that present risk of inundation and how they can be affected. A 2D-horizontal numerical model implemented with the Delft3D software was developed for this estuarine region including also the adjacent coastal zone. Available in-situ data were used for model calibration and validation processes. The obtained results are consistent with the in-situ measured water levels, allowing to understand the dynamics of the estuary during flood events. The robustness of the implemented numerical model allows to anticipate flood scenarios effects and associated water levels. The simulations results can then be used for sustainable management of this estuarine zone that presents high social, economic and environmental values.

1980 ◽  
Vol 1 (17) ◽  
pp. 142
Author(s):  
D. Prandle ◽  
E.R. Funke ◽  
N.L. Crookshank ◽  
R. Renner

The use of array processors for the numerical modelling of estuarine systems is discussed here in the context of "hybrid modelling", however, it is shown that array processors may be used to advantage in independent numerical simulations. Hybrid modelling of tidal estuaries was first introduced by fiolz (1977) and later by Funke and Crookshank (1978). In a hybrid model, tidal propagation in an estuary is simulated by dynamically linking an hydraulic (or physical) scale model of part of the estuary to a numerical model of the remaining part in a manner such that a free interchange of flow occurs at the interface(s). Typically, the elevation of the water surface at the boundary of the scale model is measured and transmitted to the numerical model. In return, the flow computed at the boundary of the numerical model is fed directly into the scale model. This approach enables the extent of the scale model to be limited to the area of immediate interest (or to that area where flow conditions are such that they can be most accurately simulated by a scale model). In addition, since the region simulated by the numerical model can be extended almost indefinitely, the problems of spurious reflections from downstream boundaries can be eliminated. In normal use, numerical models are evaluated on the basis of computing requirements, cost and accuracy. The computer time required to simulate one tide cycle is, in itself, seldom of interest except in so far as it affects the above criteria. However in hybrid modelling this parameter is often paramount since concurrent operation of the numerical and scale models requires that the former must keep pace with the latter. The earlier hybrid model of the St. Lawrence (Funke and Crookshank, 1978) involved a one-dimensional numerical model of the upstream regions of the river. However, future applications are likely to involve extensive two-dimensional numerical simulation.


Author(s):  
Gianni Bartoli ◽  
Michele Betti ◽  
Saverio Giordano ◽  
Maurizio Orlando

The chapter reports on the in-situ experimental campaign and the numerical modelling that were performed to assess the static and dynamic behaviour of the Cupola of the Siena Cathedral in Italy: an irregular polygonal masonry structure built in the 13th century and composed of two domes. The research was motivated by the failure of some of the stone-trusses which connect the two masonry domes and consists of: a) single and double flat-jack tests in the internal dome, b) dynamic vibration tests on the Cupola under environmental (wind) and artificial (vibrodyne) loads and c) dynamic vibration tests on the double colonnade located below the Cupola (hammer impact tests). Results of tests were employed to identify a numerical model of the Cupola, which allowed to simulate its structural behaviour and to account for the failure of the stone-trusses between the two domes. The numerical model was later extended to the whole Cathedral. Through the discussion of an emblematic case study, the chapter shows a careful application of non-destructive testing (NDT) and numerical modelling in the field of assessment (and rehabilitation) of heritage buildings.


2021 ◽  
pp. 1-6
Author(s):  
Willian Melo ◽  
José Pinho ◽  
Isabel Iglesias ◽  
Ana Bio ◽  
Paulo Avilez-Valente ◽  
...  

The knowledge of physical, biological, and chemical estuarine processes and how they are affected by climate change conditions is essential for improving estuarine management. A common methodological approach for studying these complex processes is based on the implementation of numerical models supported by field data as bathymetry, sediment characteristics, flow discharges, current velocities, and sea water levels. This work is based on the implementation of a numerical model of the Minho River estuary using the Delft3D software. This model is able to simulate hydrodynamic and morphodynamic processes for different time scales. It was calibrated using the OpenDA tool, which automatically determines some of the models’ parameters, such as the tidal constituents and the roughness coefficient, aiming to minimize the error between observed data and simulated results. Different scenarios were considered to assess the effects of climate change, according to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Results showed that the elevation in the estuary mouth can reach 77 cm, depending on the considered scenario. It was also determined that floods are the main sediment transport driver along the estuary, intensifying the accretion processes. Furthermore, the sea-level rise reduces the amount of transported sediments to the coastal platform, increasing the erosion risk in this area and increasing the accretion inside the estuary.


2016 ◽  
Vol 2 (9) ◽  
pp. 448-457 ◽  
Author(s):  
Mohammad Reza Enjilzadeh ◽  
Ebrahim Nohani

Morning glory spillways with drop inlets are normally employed in dams built on narrow valleys or placed on steep slopes. In Iran, morning glory spillways have been commonly used in large Dam projects such as Sefidrood dam, Alborz dam, and Haraz dam. Physical models should be built to accurately determine hydraulic parameters of the flow and flow field in spillways. Establishment of a physical model involves extravagant costs and conditions that cannot be justified in some cases. Therefore, suitable numerical models can be proposed for such circumstances. Using FLOW3D numerical models, 3-dimensional numerical modelling of the flow was calibrated and validated by experimental information associated with morning glory spillway of Alborz dam and accuracy of numerical modelling was determined by relative error of numerical model. So it was attempted to determine flow pattern and control conditions of morning glory spillways in different modes using boundary conditions, inlet conditions and grid spacing of flow field and project rating curve of morning glory spillways. According to the results of numerical model, relative error of numerical modelling equals 6.4% for calculating discharge rate of the spillways. Numerical modelling error is 7.6% for determining depth parameter of the flow in spillway crest in comparison with experimental results.


2018 ◽  
Vol 477 (1) ◽  
pp. 511-521 ◽  
Author(s):  
Morelia Urlaub ◽  
Heinrich Villinger

AbstractThe stability of submarine slopes is often characterized using campaign-based geophysical and geotechnical measurements in combination with numerical modelling. However, such one-off measurements do not reflect transient changes in slope stability. In situ monitoring of physical parameters critical for slope stability over periods of months to years can provide crucial information on slope stability and can also be used in an early-warning system for submarine landslides and the possibly resulting tsunamis. We review existing techniques that are capable of monitoring seafloor deformation over long periods of time. Based on numerical models we can identify the magnitude of parameters related to landslide-induced seafloor deformation. Simulations of three different failure scenarios up to the point of failure show that the development of the stress state of a slope and hence stability over time can be captured by measurements of tilt, pressure and strain at the seafloor. We also find that different failure mechanisms induce different deformation signals at the seafloor, in particular tilt. Hence, with a site- and target-specific survey design (or a large pool of instruments), seafloor deformation measurements in combination with numerical modelling can be used to determine the temporal evolution of slope stability as well as to identify underlying failure mechanisms.


2019 ◽  
Vol 85 ◽  
pp. 08008
Author(s):  
Andrei Valentin Drăguşin ◽  
Loretta Batali

Foundation of an off-shore wind mill is submitted throughout its existence to a very high number of cycles coming from lateral actions such as waves or wind. These actions have a strong aleatory character which makes them very hard to predict, quantify and analyse. Therefore, in current design practice, these actions are being considered as pseudo-static force at their maximum values, with the cyclic phenomenon being neglected. This can lead to an inappropriate design of the foundation, which could have a negative impact on the future structure. This type of structure is generally built on a monopile foundation, a single, large diameter pile, which will be submitted to thousands lateral cycles. The pile diameter plays an important role, influencing the behaviour of the entire structure. Centrifuge experiments on small-scale models are very useful to study such complex problem as piles under lateral cyclic loads. Several researches have been carried out internationally and the results can be used for calibrating numerical models, which is obviously a more accessible method of design, compared to an experimental approach. This has been precisely the starting point of this paper. The purpose of the present paper is to analyse the influence of the pile diameter, by using a FEM a numerical model, previously calibrated based on centrifuge experiments carried out at IFSTTAR Nantes. For the numerical modelling the software CESAR-LCPC 3D has been used. Several pile diameters have been considered, as follows: 0.72 m, 1.08 m, 1.44 m, 1.80 m, 2.16 m and 2.52 m. The results are taking into account the lateral displacement and bending moment of the piles, for static and cyclic loading. The main objective was to determine the stabilisation rate of the most important two design elements (pile head displacement and maximum bending moment) after “n” cycles and to eventually conclude the diameter value beyond which no more influence of cycles is recorded. The numerical model considered 15 cycles and the results have been used extrapolated in order to determine the cycle “n” of stabilisation (for displacement and bending moment).


2021 ◽  
Author(s):  
José Pinho ◽  
Isabel Iglesias ◽  
Willian Melo ◽  
Ana Bio ◽  
Paulo Avilez-Valente ◽  
...  

<p>Spits are landforms that present a complex morphology, which depends on currents, waves, sediment transport, tidal range and anthropic-induced changes. Their position and shape is subject to extreme events like flood river discharges and storms. They can also respond to processes that take place at larger time scales, as plate tectonics, sea level rise or even climatological patterns with teleconnections all over the world, as the well know North Atlantic Oscillation (NAO) or El Niño-Southern Oscillation (ENSO). This is the case of the Douro river mouth sand spit located on the northern coast of Portugal. This naturally dynamic sand spit, which has moved landwards over the past decades, has caused frequent nuisance to navigation, affecting width and depth of the navigation channel. Therefore, a breakwater was constructed in an attempt to stabilise the sand spit and the estuary inlet.</p><p>Validated hydrodynamic numerical models (openTELEMAC-MASCARET and Delft3D) of the Douro river estuary have demonstrated ability to accurately describe the estuarine hydrodynamic patterns and water elevation under extreme flood conditions. Model results showed that for higher river flow discharges the sand spit is partially inundated.</p><p>In this work a morphodynamic model (Delft3D) of the estuary was implemented to assess both the morphodynamics of the sand spit under extreme events, including the effect of sea level rise due to climate change, and the variation of extreme water levels along the estuary due to spit erosional processes that can occur during flood events.</p><p>Preliminary results show that the sand spit will be locally eroded for the higher river flood discharges, forming a two-secondary-channels system, with one channel located near the breakwater’s southern extremity and the other, narrower, near the south bank. Associated with these two channels, two depositional bars will be formed in front of the channels at the coastal platform. However, the inner immersed sand spit will be suffering a sedimentation process for all of the simulated scenarios. This way, neither the river mouth discharge conditions nor the water levels inside the estuary will suffer significant changes according to the simulated scenarios.</p><p>These results will be complemented with further analyses considering the sediment size influence, tidal level, storm surge, sea level rise and river flood discharges.</p><p>Acknowledgements: To the Strategic Funding UIDB/04423/2020 and UIDP/04423/2020 (FCT and ERDF) and to the project EsCo-Ensembles (PTDC/ECI-EGC/30877/2017, NORTE 2020, Portugal 2020, ERDF and FCT). The authors also want to acknowledge the data provided by EDP and IH.</p>


2016 ◽  
Vol 33 (3) ◽  
pp. 409-428 ◽  
Author(s):  
Shawn R. Smith ◽  
Kristen Briggs ◽  
Nicolas Lopez ◽  
Vassiliki Kourafalou

AbstractNumerical models are used widely in the oceanic and atmospheric sciences to estimate and forecast conditions in the marine environment. Herein the application of in situ observations collected by automated instrumentation on ships at sampling rates ≤5 min is demonstrated as a means to evaluate numerical model analyses. Specific case studies use near-surface ocean observations collected by a merchant vessel, an ocean racing yacht, and select research vessels to evaluate various ocean analyses from the Hybrid Coordinate Ocean Model (HYCOM). Although some specific differences are identified between the observations and numerical model analyses, the purpose of these comparisons is to demonstrate the value of high-sampling-rate in situ observations collected on ships for numerical model evaluation.


2016 ◽  
Vol 2 (9) ◽  
pp. 474-483 ◽  
Author(s):  
Behnam Shamohamadi ◽  
Ali Mehboudi

At the junction of channels, the two corresponding flows of the main and submain channels are diverted from their main alignment and the form and the flow properties change at the junction. Changes in water level profile and depth of flow, velocity distribution, stagnation zone, constriction of public channel, energy loss and also formation of hydraulic jump are among the most important hydraulic variables in this location. For accurate recognition of hydraulic properties of flow and local scour at the junction of channels, physical models are made and constructed. Setting up a physical model requires many conditions and high costs which sometimes are not justifiable, hence appropriate numerical models could be proposed for such options. In this research using Flow3D numerical model, the numerical modelling of the flow has been performed in 3D form utilizing the available laboratory information which is calibrated and validated and accuracy of the numerical modelling, and the corresponding relative error are determined. The calibration and validation of the numerical model results demonstrate that the maximum relative error of the numerical model when simulating for maximum values of scour depth at the flow junction is equal to 8.2%. Also using the numerical model it was found that with passage of time in numerical model, from .....


2012 ◽  
Vol 1 (33) ◽  
pp. 35
Author(s):  
Ernest R. Smith ◽  
Felice D'Alessandro ◽  
Giuseppe Roberto Tomasicchio ◽  
Joseph Z. Gailani

Nearshore placement of sand is becoming a more popular option in two related types of coastal engineering projects: beach nourishment and inlet dredging. Placing the sand in the nearshore instead of directly on the beach can reduce the costs of a beach nourishment project (Douglass 1995); furthermore, the environmental impact to the beach and dune ecosystem may be perceived to be less for open-water disposal with subsequent migration than for direct placement on the beach. Nearshore placement of sand is also an option in navigation dredging projects for similar reasons. Several design and planning questions relate to the fate of dredged sand placed in the nearshore. Can we economically use profile nourishment, and what is the certainty that a constructed submerged feature will move onshore or remain in place? And if it will move, what is the rate of its movement? Another question concerns how deep material should be placed. In order to answer these questions, together with physical model experiments, several empirical/numerical models have been developed in the past in the United States as a part of the Corps of Engineers ‘Dredging Research Program’ (DRP) (Hands 1991, Larson and Kraus 1992). Hydrodynamic modelling of the nearshore environment has reached a verifiable level of maturity in the last decades as a result of well-defined equations, established numerical solutions and quality laboratory and field data. On the contrary, modelling of sediment transport and beach profile evolution has not yet approached a similar level of accuracy. Most commonly applied models to predict beach profile modifications and to estimate the migration rate of nearshore constructed sand mounds rely on empirical relationships (Douglass 1995). More recently, the numerical model C-SHORE (Kobayashi et al. 2007; Figlus et al. 2011) was developed resulting in simple, practical and accurate code that predicts beach–dune profile evolution over the near-shore region in response to waves, currents and water levels. In the present work, a calibration and verification procedure is considered for the numerical model C-SHORE (Kobayashi et al. 2007) and the empirical model (Douglass 1995).


Sign in / Sign up

Export Citation Format

Share Document