Genetic engineering technologies for Ethiopian agriculture: Prospects and challenges

2014 ◽  
Vol 20 (4) ◽  
Author(s):  
Adane Abraham

Genetic engineering (GE) technologies can contribute to improve crop productivity and quality in Ethiopia. Adoption of commercialized insect resistance and herbicide tolerance technologies can help to protect major crops such as cotton, maize, sorghum and small cereals from their main insect pests or prevent heavy weed-inflicted loss. Moreover, key production constraints such as  bacterial wilt of enset, late blight of potato, drought stress on crops like maize and wheat, lodging resistance on tef as well as low nutritive quality of native crops like enset and grasspea can be addressed by strengthening domestic GE research capacity and international collaboration. Cognizant of this potential, the Ethiopian government has made significant investment in modern biotechnology capacity building in the last decade. There has also been specific interest by cotton sector to boost its productivity by adopting insect resistance (Bt) technologies. However, the GE regulatory system based on the existing biosafety law is so stringent that it is not possible for the country to access useful technologies from abroad as well as initiate domestic GE research. Consequently, no GE experiment is approved so far, leaving the country at risk of missing out on the global GE revolution. To catch up and  harness the benefits of GE technologies, the country needs to create conducive regulatory environment, strengthen domestic GE capacity and devise a farsighted strategy.

2020 ◽  
Vol 18 (1) ◽  
pp. 1-21
Author(s):  
Le Thi Thu Hien ◽  
Pham Le Bich Hang ◽  
Nguyen Tuong Van ◽  
Le Thi Minh Thanh ◽  
Dao Thi Hang ◽  
...  

Soybean (Glycine max) is one of the crops which have high economic value and serve for food, feed and process of many countries around the world. However, there are many factors affecting the productivity of soybean, of which insect pests and diseases are the most harmful agents. Therefore, an application of biotechnology to transfer insect resistance genes derived from a species of bacteria Bacillus thuringiensis can contribute to increase soybean yield and significantly reducing pesticide use. Currently, there are many insecticidal proteins detected from B. thuringiensis such as Cry, Cyt and Vip with a broad and specific spectrum belonged to several orders Lepidoptera, Diptera, Coleoptera, Homopera, and Nematoda. Numerous studies have been implemented over the world to transfer genes encoding these proteins in combination or modified forms to increase their toxicity. Several events of genetically engineered soybean with stacked traits of insect resistance and herbicide tolerance are commercialized and approved to be cultured in many countries such as MON 87701 × MON 89788 or DAS-81419-2. In Vietnam, studies on genetically engineered soybean with insect resistance trait has been carried out. Moreover, the exploitation, screening and selection of high biodiversity and indigenous B. thuringiensis strains which habors specific genes capable of killing targeted insects and serve as materials for plant transformation are great scientific meaning and potential practical application. This will be an important source of materials to create many soybean cultivars with good ability of insect resistance in order to meet specific needs.


2016 ◽  
Vol 16 (1) ◽  
pp. 72
Author(s):  
M. Herman

<p>The main constraint encountered in the<br />utilization of plant genetic resources (PGR) in agriculture are<br />biotic stresses such as insect pests, plant diseases, and plant<br />parasitic nematodes. The application of genetic engineering<br />techniques create a great opportunity for crops improvements<br />particularly for insect and plant diseases resistance. Through<br />genetic engineering, genetically engineered (GE) crops have<br />been developed, of which having the new traits such as resistance<br />to insect pests, plant diseases, and herbicide tolerance.<br />GE crops are already widely grown and marketed in many<br />countries. Globally, GE crops that are commercialized consists<br />of four categories of traits, which are insect resistance (IR),<br />herbicide tolerance, (HT), the combined traits of IR and HT<br />(stacked genes), and virus resistance. Initially, GE crops had<br />been commercialized globally covering 1.7 million ha in 1996,<br />and the cropping area increased rapidly to reach about 134<br />million ha in 2009. Indonesia is known as a country rich in<br />PGR, that have very high value. One of environmentally<br />friendly technologies that can be applied in the utilization of<br />PGR in Indonesia, is genetic engineering. In Indonesia,<br />research on plant genetic engineering had started since 1997.<br />Commodities that are being researched to develop GE plants<br />limited on rice, potatoes and tomatoes. GE rice resistant to<br />stem borer (Scirpophaga incertulas), GE potato resistant to<br />late blight (Phytophthora infestans), and GE tomato resistant<br />to tomato yellow leaf curl virus (TYLCV) and cucumber<br />mosaic virus (CMV) have been successfully developed by<br />Research Center for Biotechnology of Indonesian Institute of<br />Science and Indonesian Center for Agricultural Biotechnology<br />and Genetic Resources Research and Development<br />(ICABIOGRAD). Those GE crops have been tested for their<br />resistance at the screenhouses, green houses of the biosafety<br />containment, and confined field trial.</p>


2020 ◽  
Vol 50 (6) ◽  
Author(s):  
Cássia Canzi Ceccon ◽  
Andréia Caverzan ◽  
Rogerio Margis ◽  
José Roberto Salvadori ◽  
Magali Ferrari Grando

ABSTRACT: Gene stacking refers to the introduction of two or more transgenes of agronomic interest in the same plant. The main methods for genetically engineering plants with gene stacking involve (i) the simultaneous introduction, by the co-transformation process, and (ii) the sequential introduction of genes using the re-transformation processes or the sexual crossing between separate transgenic events. In general, the choice of the best method varies according to the species of interest and the availability of genetic constructions and preexisting transgenic events. We also present here the use of minichromosome technology as a potential future gene stacking technology. The purpose of this review was to discuss aspects related to the methodology for gene stacking and trait stacking (a gene stacking strategy to combine characteristics of agronomical importance) by genetic engineering. In addition, we presented a list of crops and genes approved commercially that have been used in stacking strategies for combined characteristics and a discussion about the regulatory standards. An increased number of approved and released gene stacking events reached the market in the last decade. Initially, the most common combined characteristics were herbicide tolerance and insect resistance in soybean and maize. Recently, commercially available varieties were released combining these traits with drought tolerance in these commodities. New traits combinations are reaching the farmer’s fields, including higher quality, disease resistant and nutritional value improved. In other words, gene stacking is growing as a strategy to contribute to food safety and sustainability.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 526d-526
Author(s):  
M. Freeman ◽  
C. Walters ◽  
M.A. Thorpe ◽  
T. Gradziel

Almond, as with other stone fruit, possesses a highly lignified endocarp or shell. The dominant hard-shelled trait (D-) is positively associated with greater resistant to insect infestation than nuts expressing the paper-shelled (dd) trait. Hard-shelled genotypes have undesirable effects, including a lower kernel meat-to-nut crack-out ratio, greater kernel damage during mechanical shelling, and a reduction in plant energy available to kernel development. Histogenic analysis shows that the almond endocarp, unlike peach, has a tri-partite structure. Insect feeding studies have subsequently demonstrated that the inner endocarp layer, which is similar in both hard and paper-shelled types, is the most important structural barrier to insect infestation. Shell-seal integrity and X-ray studies have confirmed that discontinuities at the inner endocarp suture seal are the primary, though not the sole site of entry for insect pests. Paper-shelled almond selections with highly lignified and well-sealed inner endocarps show resistance levels comparable to hard shelled types but with crack-out ratios 30% to 40% higher. Pseudo-paper-shelled types have also been selected, in which a highly lignified outer endocarp is formed, but is retained by the fruit hull at dehiscence. An understanding of endocarp morphology and development is thus important in breeding for insect resistance as well as the commercial utilization of both kernel and hull.


1996 ◽  
Vol 11 (1) ◽  
pp. 39-47 ◽  
Author(s):  
M. Sean Clark ◽  
Stuart H. Gage

AbstractWe evaluated the effects of free-range chickens and geese on insect pests and weeds in an experimental, nonchemical agroecosystem consisting of an apple orchard with intercropped potatoes. The objective was to assess the potential of these domestic bird species as biological control agents. Four insect pests were studied: plum curculio, apple maggot, Japanese beetle, and Colorado potato beetle. Chickens fed on several potential crop pests, including Japanese beetle. Although Japanese beetles were less abundant on apple trees when chickens were present, the proportion of damaged fruit was not reduced. Furthermore, chickens did not affect weed abundance or crop productivity. In contrast, geese were effective weeders. Their activities reduced weed abundance and increased potato plant growth and yields compared with a minimally weeded control. In addition, the activities of geese indirectly reduced apple fruit damage by plum curculio and increased the proportion of pest-free fruit, possibly because removal of vegetation by the geese reduced humidity at the soil surface and therefore reduced the activity of plum curculio.


2016 ◽  
Vol 16 (3) ◽  
pp. 205-212 ◽  
Author(s):  
Karunamurthy Dhivya ◽  
Sundararajan Sathish ◽  
Natarajan Balakrishnan ◽  
Varatharajalu Udayasuriyan ◽  
Duraialagaraja Sudhakar

Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
A. Badji ◽  
D. B. Kwemoi ◽  
L. Machida ◽  
D. Okii ◽  
N. Mwila ◽  
...  

Several species of herbivores feed on maize in field and storage setups, making the development of multiple insect resistance a critical breeding target. In this study, an association mapping panel of 341 tropical maize lines was evaluated in three field environments for resistance to fall armyworm (FAW), whilst bulked grains were subjected to a maize weevil (MW) bioassay and genotyped with Diversity Array Technology’s single nucleotide polymorphisms (SNPs) markers. A multi-locus genome-wide association study (GWAS) revealed 62 quantitative trait nucleotides (QTNs) associated with FAW and MW resistance traits on all 10 maize chromosomes, of which, 47 and 31 were discovered at stringent Bonferroni genome-wide significance levels of 0.05 and 0.01, respectively, and located within or close to multiple insect resistance genomic regions (MIRGRs) concerning FAW, SB, and MW. Sixteen QTNs influenced multiple traits, of which, six were associated with resistance to both FAW and MW, suggesting a pleiotropic genetic control. Functional prioritization of candidate genes (CGs) located within 10–30 kb of the QTNs revealed 64 putative GWAS-based CGs (GbCGs) showing evidence of involvement in plant defense mechanisms. Only one GbCG was associated with each of the five of the six combined resistance QTNs, thus reinforcing the pleiotropy hypothesis. In addition, through in silico co-functional network inferences, an additional 107 network-based CGs (NbCGs), biologically connected to the 64 GbCGs, and differentially expressed under biotic or abiotic stress, were revealed within MIRGRs. The provided multiple insect resistance physical map should contribute to the development of combined insect resistance in maize.


Sign in / Sign up

Export Citation Format

Share Document