Analysis of Influential Factors on Wax Deposition for Flow Assurance in Subsea Oil Production System

2015 ◽  
Vol 39 (6) ◽  
pp. 662-669
Author(s):  
Sun-Young Jung ◽  
Pan-Sang Kang ◽  
Jong-Se Lim
2021 ◽  
Vol 73 (08) ◽  
pp. 53-54
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199003, “Subsea Systems Innovations and the Use of State-of-the-Art Subsea Technologies Help the Flow Assurance of Heavy-Oil Production in Ultradeep Water,” by Carlos Alberto Pedroso, SPE, Geraldo Rosa, SPE, and Priscilla Borges, Enauta Energia, et al., prepared for the 2020 SPE Latin American and Caribbean Petroleum Engineering Conference, Bogota, Colombia, 17–19 March. The paper has not been peer reviewed. Flow assurance in ultradeep water is a major issue for production. The Atlanta field, which produces heavy oil in ultradeep water, is a project combining several challenges: hydrates formation, emulsion tendency, scale formation, foaming, and high viscosities. The complete paper discusses innovations and technologies applied to make Atlanta a successful case of ultradeepwater heavy-oil production. Introduction Discovered in 2001, the Atlanta field is in the presalt exclusion area in the north of the Santos Basin, 185 km southeast of Rio de Janeiro, at a water depth of 1550 m. The postsalt reservoir is contained in the Eocene interval and is characterized by high net-to-gross sands (82–94%) with a high average porosity of 36% and high permeabilities in the range of 4–6 Darcies. These excellent rock properties, however, are offset by the poor quality of the Atlanta crude, which is heavy (14 °API), viscous (228 cp at reservoir conditions), and highly acidic. The development of the field took place in two phases, an early production system (EPS) and a definitive production system (DPS). First oil occurred in May 2018. The EPS is expected to last from 4 to 5 years, producing from three horizontal wells to a floating production, storage, and offloading vessel (FPSO) with a processing capacity of 30,000 BOPD. The DPS will consist of 12 horizontal producers tied to a larger-capacity FPSO.


2020 ◽  
pp. 120-127
Author(s):  
E. N. Skvortsova ◽  
O. P. Deryugina

The article discusses the results of a study on the selection of wax inhibitors that can be used at the Kondinskoye oil field during transportation and dehydration of the emulsion.Asphaltene precipitation is one of the most serious issues in oil production. The experiment was conducted in order to select the most effective wax inhibitors. We have carried out laboratory tests to choose the most effective wax inhibitor in the conditions of oil production, collection, preparation and external transport systems at the Kondinskoye oil field. Based on the data obtained, wax inhibitor-2, wax inhibitor-4, and wax inhibitor-6 have shown the best results in ensuring the efficiency of inhibition, which should be at least 70 %, and, therefore, they can be allowed to pilot tests. The recommended initial dosage of inhibitors according to the results obtained during pilot tests should be at least 500 g/t of oil.


2021 ◽  
Author(s):  
Ferdio Giffary ◽  
Achmad Anggawirya Alimin ◽  
Bambang Heru Susanto

2021 ◽  
Author(s):  
Babalola Daramola

Abstract This publication presents how an oil asset unlocked idle production after numerous production upsets and a gas hydrate blockage. It also uses economics to justify facilities enhancement projects for flow assurance. Field F is an offshore oil field with eight subsea wells tied back to a third party FPSO vessel. Field F was shut down for turnaround maintenance in 2015. After the field was brought back online, one of the production wells (F5) failed to flow. An evaluation of the reservoir, well, and facilities data suggested that there was a gas hydrate blockage in the subsea pipeline between the well head and the FPSO vessel. A subsea intervention vessel was then hired to execute a pipeline clean-out operation, which removed the gas hydrate, and restored F5 well oil production. To minimise oil production losses due to flow assurance issues, the asset team evaluated the viability of installing a test pipeline and a second methanol umbilical as facilities enhancement projects. The pipeline clean-out operation delivered 5400 barrels of oil per day production to the asset. The feasibility study suggested that installing a second methanol umbilical and a test pipeline are economically attractive. It is recommended that the new methanol umbilical is installed to guarantee oil flow from F5 and future infill production wells. The test pipeline can be used to clean up new wells, to induce low pressure wells, and for well testing, well sampling, water salinity evaluation, tracer evaluation, and production optimisation. This paper presents production upset diagnosis and remediation steps actioned in a producing oil field, and aids the justification of methanol umbilical capacity upgrade and test pipeline installations as facilities enhancement projects. It also indicates that gas hydrate blockage can be prevented by providing adequate methanol umbilical capacity for timely dosing of oil production wells.


Since early 1980, BP has been developing the conceptual design of a Single-Well Oil Production System or SWOPS. This paper outlines the concept and discusses the design and the operational criteria that have been applied in this early work. It further examines some of the innovative areas of technology that have been included in this new approach and outlines the work of the detail design phase, which has just started.


2019 ◽  
Vol 255 ◽  
pp. 02001 ◽  
Author(s):  
Inyang John ◽  
Andrew-Munot Magdalene ◽  
Syed Shazali Syed Tarmizi ◽  
Johnathan Tanjong Shirley

This paper reviews key production process for crude palm oil and highlights factors that highly influence the production of crude palm oil. This paper proposes a generic conceptual model for crude palm production process considering these factors. The conceptual model could be modified to consider other factors not included in this paper. The future research would be to construct a simulation model based on the conceptual model proposed in this paper and analyse the effect of these factors on the performance of crude palm oil production system.


Sign in / Sign up

Export Citation Format

Share Document