scholarly journals Setaria faberi Seed HeteroblastyBlueprints Seedling Recruitment: III. Seedling Recruitment Behavior

2012 ◽  
Vol 2 (6) ◽  
pp. 165-180
Author(s):  
Kari Jovaag ◽  
Jack Dekker ◽  
Brad Atchison
Weed Science ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 394-400 ◽  
Author(s):  
Benjamin Fleet ◽  
Gurjeet Gill

Weedy barley species have emerged as important weeds in southern Australia, where they can be particularly difficult to control in cereal crops. Knowledge of seed dormancy mechanisms, germination ecology, and recruitment behavior in the field would facilitate development of effective weed-control programs for these weed species. Based on somatic chromosome number, smooth barley was identified as the species infesting all the sites sampled in South Australia. Smooth barley populations from cropping fields and noncrop habitats showed large differences in their pattern of dormancy loss. Noncrop populations (EP2, EP3, and MN2) rapidly lost dormancy during dry after-ripening and showed 70 to 95% germination at 3 mo after maturity. Five populations collected from cropping fields (EP1, EP4, EP5, MN1, and MN3), on the other hand, showed < 30% germination, even at 8 mo after maturity, when germination was assessed at 20/12 C day/night temperatures. These dormant, smooth barley populations from cropping fields were found to be highly responsive to cold stratification, with germination increasing in response to the duration of the treatment. Germination of dormant, smooth barley populations increased with the addition of gibberellic acid (0.001 M GA3), but only when lemma and palea had been removed. Recruitment behavior of smooth barley in the field was influenced by the population and the tillage system. A nondormant population, collected from a long-term pasture (MN2), showed high seedling emergence (> 90%) during autumn, which was well before planting of the winter crop (lentil). In contrast, the other three populations sampled from cropping fields showed very little seedling establishment (< 10%) before crop planting, which would make them difficult to control in cereals because there are no selective herbicides available for the control of weedy barley species. There was a significant seeding system by emergence time interaction (P < 0.001), which was reflected in greater in-crop, smooth barley plant densities under zero-till than under conventional tillage and no-till systems.


2017 ◽  
Vol 70 ◽  
pp. 160-164 ◽  
Author(s):  
G.W. Bourdôt ◽  
S. Jackman ◽  
D.J. Saville

Flupropanate (sodium 2,2,3,3 tetrafluoropropanate), a slow-acting lipid bio- synthesis-inhibiting herbicide, was recently registered in New Zealand as Taskforce (745 g/L flupropanate as the sodium salt) for the selective and long-term control of Nassella trichotoma (nassella tussock) in pastures. In five dose-response experiments in permanent hill pastures in Canterbury, conducted between 2012 and 2016, we measured the efficacy of the herbicide against established plants of N. trichotoma and its residual activity against recruiting seedlings. Mortality, as an average across the five sites, was 93% 1.5 years after applying 1.49 kg flupropanate/ha (the label-recommended rate), and 100% at 2.98 kg/ha. This indicates that an application rate higher than the label rate will be necessary for complete control of a N. trichotoma infestation. The presence of 1,000 and 6,250 visible seedlings of N. trichotoma/ha in the autumn 3.2 and 2.1 years after applying 1.49 kg flupropanate/ha (at a Greta Valley and Scargill site respectively) indicates that the herbicide’s soil residues had decayed within 12 months to a concentration lower than necessary to kill the germinating seedlings of N. trichotoma.


2021 ◽  
Vol 14 (1) ◽  
pp. 3-8
Author(s):  
Philip W. Tipping ◽  
Melissa R. Martin ◽  
Jeremiah R. Foley ◽  
Ryan M. Pierce ◽  
Lyn A. Gettys

AbstractThe potential of Melaleuca quinquenervia (Cav.) S.T. Blake to reinvade cleared areas was evaluated over a 13-yr period that included two wildfires and the introduction of biological control agents. The first wildfire occurred in 1998 and was followed by a mean of 591.5 recruited seedlings m−2. Recruits from that fire were cleared 7 yr later in July 2005 for a second experiment to evaluate seedling recruitment into cleared areas. Seed rain, seedling recruitment and mortality, and sapling growth rates were measured in four plots located around individual large reproductive trees. A second natural wildfire in 2007 burned through those plots, leading to increases in seed rain followed by a pulse in recruitment of 21.04 seedlings m−2, 96.5% fewer than after the 1998 fire. Recruits in half of the plots around each tree were then treated with regular applications of an insecticide to restrict herbivory by biological control agents, while herbivory was not restricted in the other half. There was no difference in seedling mortality between treatments 1,083 d post-fire (2007) with 96.6% seedling mortality in the unrestricted herbivory treatment and 89.4% mortality in the restricted herbivory treatment. Recruits subjected to the restricted herbivory treatment grew taller than those in the unrestricted herbivory treatment, 101.3 cm versus 37.4 cm. Many of the recruits were attacked by the biological control agents, which slowed their growth. Although solitary M. quinquenervia trees retain some capacity to reinvade areas under specific circumstances, there was a downward trend in their overall invasiveness at this site, with progressively smaller recruitment cohorts due to biological control agents. Land managers should prioritize removing large reproductive trees over treating recently recruited populations, which can be left for many years for the biological control agents to suppress before any additional treatment would be needed.


2021 ◽  
Vol 492 ◽  
pp. 119219
Author(s):  
Yuan-Yuan Li ◽  
Yu-Pei Liu ◽  
Jun Gong ◽  
Shen-Hou Fan ◽  
Guo-Chun Shen ◽  
...  

Alpine Botany ◽  
2021 ◽  
Author(s):  
Vera Margreiter ◽  
Janette Walde ◽  
Brigitta Erschbamer

AbstractSeed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.


2019 ◽  
Vol 35 (2) ◽  
pp. 74-82 ◽  
Author(s):  
Hamza Issifu ◽  
George K. D. Ametsitsi ◽  
Lana J. de Vries ◽  
Gloria Djaney Djagbletey ◽  
Stephen Adu-Bredu ◽  
...  

AbstractDifferential tree seedling recruitment across forest-savanna ecotones is poorly understood, but hypothesized to be influenced by vegetation cover and associated factors. In a 3-y-long field transplant experiment in the forest-savanna ecotone of Ghana, we assessed performance and root allocation of 864 seedlings for two forest (Khaya ivorensis and Terminalia superba) and two savanna (Khaya senegalensis and Terminalia macroptera) species in savanna woodland, closed-woodland and forest. Herbaceous vegetation biomass was significantly higher in savanna woodland (1.0 ± 0.4 kg m−2 vs 0.2 ± 0.1 kg m−2 in forest) and hence expected fire intensities, while some soil properties were improved in forest. Regardless, seedling survival declined significantly in the first-year dry-season for all species with huge declines for the forest species (50% vs 6% for Khaya and 16% vs 2% for Terminalia) by year 2. After 3 y, only savanna species survived in savanna woodland. However, best performance for savanna Khaya was in forest, but in savanna woodland for savanna Terminalia which also had the highest biomass fraction (0.8 ± 0.1 g g−1 vs 0.6 ± 0.1 g g−1 and 0.4 ± 0.1 g g−1) and starch concentration (27% ± 10% vs 15% ± 7% and 10% ± 4%) in roots relative to savanna and forest Khaya respectively. Our results demonstrate that tree cover variation has species-specific effects on tree seedling recruitment which is related to root storage functions.


Sign in / Sign up

Export Citation Format

Share Document