scholarly journals Development of condenser mathematical model for research and development of ways to improve its efficiency

2020 ◽  
Vol 18 (4) ◽  
pp. 578-585
Author(s):  
Madina Shavdinova ◽  
Konstantin Aronson ◽  
Nina Borissova

The condensing unit is one of the most important elements of the steam turbine of a combined heat and power plant. Defects in elements of the condensing unit lead to disturbances in the steam turbine operation, its failures and breakdowns, as well as efficiency losses of the plant. Therefore, the operating personnel need to know the cause of the malfunction and to correct it immediately. There are no diagnostic models of condensers in the Republic of Kazakhstan at the moment. In this regard, a mathematical model of a condenser based on the methodology of Kaluga Turbine Plant (KTP) has been developed. The mathematical model makes it possible to change the input parameters, plot dependency diagrams, and calculate the plant efficiency indicators. The mathematical model of the condenser can be used to research ways for the improvement of the condensing unit efficiency, for diagnostic purposes of the equipment condition, for the energy audit conduction of the plant, and in the training when performing virtual laboratory research. Using static data processing by linear regression method we obtain that the KTP methodology of condenser calculation is fair at cooling water temperature from 20 °C to 24 °C, but at cooling water temperature from 20 °C to 28 °C, the methodology of JSC "All-Russia Thermal Engineering Institute" (JSC "VTI") is used. One of the ways to increase the condenser efficiency has been proposed. It is the heat transfer augmentation with riffling annular grooves on tubes. This method increases the heat transfer coefficient by 2%, reduces the water subcooling of the heating steam by 0.9 °C, and decreases the cooling area by 2%.

Author(s):  
Jungho Lee ◽  
Cheong-Hwan Yu ◽  
Sang-Jin Park

Water spray cooling is an important technology which has been used in a variety of engineering applications for cooling of materials from high-temperature nominally up to 900°C, especially in steelmaking processes and heat treatment in hot metals. The effects of cooling water temperature on spray cooling are significant for hot steel plate cooling applications. The local heat flux measurements are introduced by a novel experimental technique in which test block assemblies with cartridge heaters and thermocouples are used to measure the heat flux distribution on the surface of hot steel plate as a function of heat flux gauge. The spray is produced from a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-to-target spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to 45°C. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.


Author(s):  
N. G. Borissova ◽  
◽  
M. D. Shavdinova ◽  

The paper analyses the existing calculation methods for steam turbine condenser. The refined methods for calculating the condenser have also been considered. The dependency of the vapor pressure in the condenser on the temperature of the cooling water and the steam flow rate into the condenser have been considered. It can be seen from the obtained dependencies that the calculation of the condenser according to the ARTI and HEI (USA) methods coincides with the passport data. It is recommended to use the ARTI and HEI (USA) techniques for equipment diagnostics, and to use the KTP and USTU-UPI techniques when studying ways to increase the efficiency of the condenser. The mathematical model of the KG2-6200 condenser has been tested at the Almaty СHPP-2.


2020 ◽  
Vol 7 (4) ◽  
pp. 56-72
Author(s):  
Anastasiya Pavlenko ◽  

The article presents the results of a study of the process of cooling a liquid molten metal on the surface of rotating rolls. A mathematical model is proposed to determine the optimal ratio of the cooling water temperature and the size of the cooling surfaces. The research results can be used to optimize technological processes associated with the production of thin metal sheets.


Author(s):  
Ram Srinivasan

The concept of optimum cooling water temperature rise in a power plant has been introduced in this study as that which corresponds to the highest possible net plant output. Every power plant having a steam turbine exhausting to a water-cooled condenser has a unique optimum cooling water temperature rise. This optimum temperature rise may not be the minimum possible as often inadvertently assumed by power plant designers. This optimum temperature rise is a strong function of the steam turbine exhaust parameters. The author has developed correlations, which will help determine the optimum temperature rise using easily available power plant design parameters. This paper will discuss the details behind this method and show the thermal and financial advantages of designing a plant with this concept. A proper understanding of this concept will enable power plant designers to economically and efficiently size the condenser cooling water system.


Author(s):  
A.D. Vodeniktov ◽  
◽  
N.D. Chihirova ◽  

In this paper, the results of the steam turbine condenser tests showing the dependence of the dissolved oxygen concentration and the water cooling temperature are presented. The steam surface condenser with the water cooling system is considered as the first stage of deaeration in the feedwater system of a steam turbine. The aim of this work is trying to investigate and describe the influence of regime factors on the deaeration effect of the steam surface condenser. Regimes with the nominal flow of the steam in the surface condenser were chosen for the estimation. The tests were continuing for 6 months in the range of the temperature of cooling water from 1 to 25 оС. The vacuum system of the steam turbine had a high level of air leakages that decreasing the efficiency of the feedwater dearation. The results show the negative correlation between dissolved oxygen in feedwater and the cooling water temperature. The surge of the concentration of dissolved oxygen was found in the water temperature about 11оС.


Author(s):  
Jungho Lee ◽  
Cheong-Hwan Yu ◽  
Kyu Hyung Do

Water impinging jet has been widely used in a variety of engineering applications; especially in the hot steel cooling of steelmaking processes and heat treatment in hot metals. The effects of cooling water temperature on water impinging jet cooling are mainly investigated for hot steel plate cooling in this study. The heat flux are measured by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are used to measure the heat flux distributions on the hot surface. The water impinging jet is produced by a straight pipe nozzle and experiments are performed at fixed water flow rate and fixed nozzle-to-target spacing. The results show that effects of water temperature on impinging jet transfer characteristics are presented for five different water temperatures between 5 to 45°C. The heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual impinging jet cooling applications of hot steel plate.


2021 ◽  
Vol 13 (11) ◽  
pp. 5957
Author(s):  
Tomas Mauder ◽  
Michal Brezina

Production of overall CO2 emissions has exhibited a significant reduction in almost every industry in the last decades. The steelmaking industry is still one of the most significant producers of CO2 emissions worldwide. The processes and facilities used at steel plants, such as the blast furnace and the electric arc furnace, generate a large amount of waste heat, which can be recovered and meaningfully used. Another way to reduce CO2 emissions is to reduce the number of low-quality steel products which, due to poor final quality, need to be scrapped. Steel product quality is strongly dependent on the continuous casting process where the molten steel is converted into solid semifinished products such as slabs, blooms, or billets. It was observed that the crack formation can be affected by the water cooling temperature used for spray cooling which varies during the year. Therefore, a proper determination of the cooling water temperature can prevent the occurrence of steel defects. The main idea is based on the utilization of the waste heat inside the steel plant for preheating the cooling water used for spray cooling in the Continuous Casting (CC) process in terms of water temperature stabilization. This approach can improve the quality of steel and contribute to the reduction of greenhouse gas emissions. The results show that, in the case of billet casting, a reduction in the cooling water consumption can be also reached. The presented tools for achieving these goals are based on laboratory experiments and on advanced numerical simulations of the casting process.


Sign in / Sign up

Export Citation Format

Share Document