Games, Geometry, and Teaching

1988 ◽  
Vol 81 (4) ◽  
pp. 250-259
Author(s):  
George W. Bright ◽  
John G. Haruey

We believe that games can be used effectively in high school geometry both to teach content and to structure practice of problem-solving skills. In part, our belief stems from our research on the use of games in a wide range of situations (Bright, Harvey, and Wheeler 1985). Also, we recognize that games can help teach problem solving (NCTM 1980). By the time you finish reading this article, we hope we will have convinced you to share our belief and to try out our games.

1982 ◽  
Vol 75 (4) ◽  
pp. 288-290
Author(s):  
John Benson ◽  
Debra Borkovitz

The traditional high school geometry class can be enhanced by the addition of appropriate problem-solving activities. One such problem, the construction of a pentagon, can be divided into three worth-while tasks.


1990 ◽  
Vol 21 (1) ◽  
pp. 47-60 ◽  
Author(s):  
Michael T. Battista

The balance between visual-spatial and verbal-logical thought may determine “mathematical casts of mind” that influence how an individual processes mathematical information. Thus, to investigate the role that spatial thinking plays in learning, problem solving, and gender differences in high school geometry, spatial thought was examined along with its counterpart verbal-logical thought. The results suggest that whereas males and females differed in spatial visualization and in their performance in high school geometry, they did not differ in logical reasoning ability or in their use of geometric problem-solving strategies. There was evidence of gender differences in profiles of those mental abilities that are important for geometry performance and of a teacher-by-gender interaction on geometry achievement.


1993 ◽  
Vol 86 (8) ◽  
pp. 668-675
Author(s):  
Ruth McClintock

The NCTM's Curriculum and Evaluation Standards for School Mathematics (1989) offers a vision of mathematically empowered students embarking on exciting flights of discovery. This vision challenges teachers to look for ways to incorporate problem solving, cooperative learning, mathematical connections, reasoning, communication skills, and proofs into lesson plans. The Pixy Stix activities described in this article are not quite as magical as Peter Pan and Tinkerbell's prescription of sprinkling pixie dust over children who want to fly, but they do embody all the attributes mentioned above and may enable your high school geometry students to take off in some surprising directions.


1994 ◽  
Vol 87 (6) ◽  
pp. 415-418
Author(s):  
Stephen Krulik ◽  
Jesse A. Rudnick

Almost every day in every classroom, an opportunity arises for discussing a problem, solving it, and extending it to help students engage in creative reasoning. This point is constantly emphasized in the preservice methods course that our undergraduate seniors take to coincide with their practice teaching. This article recounts a sequence of activities that occurred in a senior high school geometry class that was conducted by a practice teacher.


2018 ◽  
Vol 54 (4) ◽  
pp. 212-218
Author(s):  
Gloria A. Carcoba Falomir

Algebra is considered an important high school course because it is recognized as the gateway to higher mathematics, college opportunities, and well-paying jobs. In the United States, most secondary schools require students to be proficient in algebra to be able to graduate from high school. One major component of algebra is word problem solving, which is used in algebra courses to teach students mathematical modeling and applied problem-solving skills. However, word problem solving is often a significantly challenging area for students with learning disabilities because it involves computing mathematical equations and implementing a myriad of cognitive processes that require conceptual knowledge. Diagrams are considered an effective and powerful visualization strategy because they help students see the hidden mathematical structure of the problem. The use of diagrams is recommended as students work toward more complex math concepts in middle school and high school.


2018 ◽  
Vol 5 (1) ◽  
pp. 73
Author(s):  
Hanifa Prahastami Pambayun ◽  
Endah Retnowati

Penelitian ini bertujuan untuk menghasilkan dan mendeskripsikan pengembangan bahan ajar pengayaan trigonometri SMA menggunakan teknik faded examples yang berkualitas untuk meningkatkan kemampuan pemecahan masalah siswa. Kualitas bahan ajar yang dikembangkan mencakup aspek kevalidan, keefektifan, dan kepraktisan. Penelitian ini merupakan penelitian pengembangan dengan model Plomp yang mencakup tiga tahapan. (1) penelitian awal mencakup analisis kebutuhan dan analisis konteks, (2) pengembangan yang mencakup desain produk dan pembuatan produk, dan (3) evaluasi yang meliputi proses validasi dan proses implementasi. Proses pengembangan melibatkan dua ahli, satu orang guru dan 50 siswa (siswa kelas X pengayaan 1 dan X pengayaan 2) SMA IPA di Mataram. Hasil dari penelitian ini adalah bahan ajar pengayaan berupa buku guru dan buku siswa yang dikembangkan dengan menerapkan teknik faded examples. Pada buku pengayaan terdapat paket faded examples dengan jenis backward dan forward fading dimana pada akhir paket, siswa diminta untuk membuat sendiri soal sesuai dengan materi yang sedang dipelajari. Teknik ini dikembangkan oleh teori desain pembelajaran bernama Cognitive Load Theory (CLT). Hasil penelitian menunjukkan bahwa bahan ajar ini layak digunakan karena dinilai sangat baik secara isi dan penyajian oleh dosen validator, praktis oleh guru matematika dan praktis digunakan oleh siswa. Hasil ketuntasan belajar adalah sebanyak  100% siswa mencapai nilai minimal kemampuan pemecahan masalah. The application of faded examples techniques to improve student’s problem solving ability on trigonometry at high school level AbstractThis study was aimed to produce and describe the quality of the developed Trigonometric Senior High School Science Program Enrichment’s Instructional Materials using Faded-Examples Techniques to Improve Problem Solving Ability. The quality of the developed teaching materials include all aspects of validity, effectiveness, and practicality. This was a developmental research used three phases Plomp’s model which consists of: (1) preliminary studies which involved the needs and context analysis, (2) product design development, and (3) the evaluation process of product validation and implementation. The development process involves two experts as validator, one teacher, and 50 students (X pengayaan 1 and X pengayaan 2). The study results the trigonometric enrichment’s teaching materials which consists of the teacher’s textbook and the student’s textbook that was developed using the faded-examples technique. This technique based on The Cognitive Load Theory (CLT) instructional design. The results of the study showed that the quality of the developed trigonometric enrichment’s teaching materials is “very good” according to lecturer validation and “practical” according to the evaluation from the teachers and students. The results of the learning showed that 100% of the students passed the minimum grade criteria of problem solving skills.


Author(s):  
Pawan Tyagi ◽  
Christine Newman

Preparing high school students for engineering disciplines is crucial for sustainable scientific and technological developments in the USA. This paper discusses a pre-college program, which not only exposes students to various engineering disciplines but also enables them to consider engineering as the profession. The four-week long “Engineering Innovation (EI)” course is offered every year to high school students by the center of outreach, Johns Hopkins University. EI program is designed to develop problem-solving skills through extensive hands-on engineering experiments. A team consisting of an instructor, generally a PhD in Engineering, and a teaching fellow, generally a high school science teacher, closely work with students to pedagogically inculcate basics of core engineering disciplines such as civil, mechanical, electrical, materials, and chemical engineering. EI values independent problem-solving skills and simultaneously promote the team spirit among students. A number of crucial engineering aspects such as professional ethics, communications, technical writing, and understanding of common engineering principles are inculcated among high school students via well-designed individual and group activities. This paper discusses the model of EI program and its impact on students learning and their preparation for the engineering career.


2021 ◽  
Vol 2 (1) ◽  
pp. 42-53
Author(s):  
Dyah Ayu Setyarini ◽  
Zainal Arifin Imam Supardi ◽  
Elok Sudibyo

This research aims to improve senior high school students’ physics problem-solving skills through learning used IBMR learning model. This research was a pre-an experimental study with a one-group pre-test and post-test design. The Methods of data collection used validation and test. The materials used to teach were valid category by two experts and can be used to practice physics problem-solving skills. The average post-test score physics problem-solving ability was 73.24 with an N-gain of 0.59 was classified as moderate. The success of IBMR learning model-based devices in practicing problem-solving abilities can be seen in the increase in the average score in each indicator of problem-solving abilities. The indicator of understanding the problem had the highest post-test average score of 94.58 with an N-gain of 0.89 in the high category. The problem-solving indicator had the lowest posttest average score was 58.22 with N-gain 0.39 and mean that it was the moderate category. Based on the results study, it can be concluded that the learning used by IBMR learning model can practice the ability to solve physics problems on heat material and its displacement. Learning with the IBMR learning model was expected to train students in solving physics problems. The stages in the IBMR learning model can help students


Sign in / Sign up

Export Citation Format

Share Document