Storytelling + Origami = Storigami Mathematics

2007 ◽  
Vol 14 (4) ◽  
pp. 206-212
Author(s):  
Marla Mastin

All educators continually search for ways to assist students in learning mathematical concepts. The challenge for teachers is to provide a “thinking” curriculum and creative instructional methods while helping students recognize that they should be actively involved in their own learning. This article presents a way to engage students in mathematics through the use of an innovative instructional method based on constructivist theory, which emphasizes the “building” that takes place in the brain as a person learns and which is rooted in both the social and the cognitive perspective of learning.

Author(s):  
Mark A Thornton ◽  
Diana I Tamir

Abstract The social world buzzes with action. People constantly walk, talk, eat, work, play, snooze and so on. To interact with others successfully, we need to both understand their current actions and predict their future actions. Here we used functional neuroimaging to test the hypothesis that people do both at the same time: when the brain perceives an action, it simultaneously encodes likely future actions. Specifically, we hypothesized that the brain represents perceived actions using a map that encodes which actions will occur next: the six-dimensional Abstraction, Creation, Tradition, Food(-relevance), Animacy and Spiritualism Taxonomy (ACT-FAST) action space. Within this space, the closer two actions are, the more likely they are to precede or follow each other. To test this hypothesis, participants watched a video featuring naturalistic sequences of actions while undergoing functional magnetic resonance imaging (fMRI) scanning. We first use a decoding model to demonstrate that the brain uses ACT-FAST to represent current actions. We then successfully predicted as-yet unseen actions, up to three actions into the future, based on their proximity to the current action’s coordinates in ACT-FAST space. This finding suggests that the brain represents actions using a six-dimensional action space that gives people an automatic glimpse of future actions.


Author(s):  
Tanaz Molapour ◽  
Cindy C Hagan ◽  
Brian Silston ◽  
Haiyan Wu ◽  
Maxwell Ramstead ◽  
...  

ABSTRACT The social environment presents the human brain with the most complex of information processing demands. The computations that the brain must perform occur in parallel, combine social and nonsocial cues, produce verbal and non-verbal signals, and involve multiple cognitive systems; including memory, attention, emotion, learning. This occurs dynamically and at timescales ranging from milliseconds to years. Here, we propose that during social interactions, seven core operations interact to underwrite coherent social functioning; these operations accumulate evidence efficiently – from multiple modalities – when inferring what to do next. We deconstruct the social brain and outline the key components entailed for successful human social interaction. These include (1) social perception; (2) social inferences, such as mentalizing; (3) social learning; (4) social signaling through verbal and non-verbal cues; (5) social drives (e.g., how to increase one’s status); (6) determining the social identity of agents, including oneself; and (7) minimizing uncertainty within the current social context by integrating sensory signals and inferences. We argue that while it is important to examine these distinct aspects of social inference, to understand the true nature of the human social brain, we must also explain how the brain integrates information from the social world.


Open Mind ◽  
2019 ◽  
Vol 3 ◽  
pp. 1-12 ◽  
Author(s):  
Sarah L. Dziura ◽  
James C. Thompson

Social functioning involves learning about the social networks in which we live and interact; knowing not just our friends, but also who is friends with our friends. This study utilized an incidental learning paradigm and representational similarity analysis (RSA), a functional MRI multivariate pattern analysis technique, to examine the relationship between learning social networks and the brain’s response to the faces within the networks. We found that accuracy of learning face pair relationships through observation is correlated with neural similarity patterns to those pairs in the left temporoparietal junction (TPJ), the left fusiform gyrus, and the subcallosal ventromedial prefrontal cortex (vmPFC), all areas previously implicated in social cognition. This model was also significant in portions of the cerebellum and thalamus. These results show that the similarity of neural patterns represent how accurately we understand the closeness of any two faces within a network. Our findings indicate that these areas of the brain not only process knowledge and understanding of others, but also support learning relations between individuals in groups.


2018 ◽  
Vol 2 ◽  
pp. 239821281881262 ◽  
Author(s):  
Elaine Fox

Emotions are at the heart of how we understand the human mind and of our relationships within the social world. Yet, there is still no scientific consensus on the fundamental nature of emotion. A central quest within the discipline of affective science is to develop an in-depth understanding of emotions, moods, and feelings and how they are embodied within the brain (affective neuroscience). This article provides a brief overview of the scientific study of emotion with a particular emphasis on psychological and neuroscientific perspectives. Following a selective snapshot of past and present research in this field, some current challenges and controversies in affective science are highlighted.


2017 ◽  
Vol 7 (1) ◽  
pp. 23
Author(s):  
Tudor Irimiaș ◽  
Giuseppe Carbone ◽  
Adrian Pîslă

The essence of social sciences is well encompassed in Green’s (2006) quote “People were created to be loved. Things were created to be used. The reason why the world is in chaos is because things are being loved and people are being used. ” For this reason, social sciences are important, as major research paradigm on how and why individuals interrelate. The aim of the actual research is to look for a conceptual approach activity, as part of a larger project focused on individual rehabilitation. The brain is trained to react to the stimulus and command a behavior. The premise, for the considered approach, is understanding the social sciences as revealing the individuals interests for self conscience, well being and moral values and drawing the line to it’s importance for governments authorities, policymakers or NGO’s.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Laurence Vaivre-Douret

This study covers the interesting field of the development in gifted children which is often neglected in pediatrics because psychomotor development data are still rare, since “gifted” children are generally noticed towards the end of their primary schooling by IQ measurement. Developmental studies have shown the evidence from several fields that children identified as “high-level potentialities” or “intellectually gifted” develop sensory, locomotor, neuropsychological, and language skills earlier than typically expected. The hypothesis is offered that the earlier development originates from biological processes affecting the physical development of the brain and in turn even intellectual abilities are developed earlier, potentially allowing for advanced development. Further it is discussed how these developmental advances interact with the social environment and in certain circumstances may entail increased risk for developing socioemotional difficulties and learning disabilities that often go unaddressed due to the masking by the advance intellectual abilities.


e-Neuroforum ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. A11-A18
Author(s):  
Sabine Windmann ◽  
Grit Hein

Abstract Altruism is a puzzling phenomenon, especially for Biology and Economics. Why do individuals reduce their chances to provide some of the resources they own to others? The answer to this question can be sought at ultimate or proximate levels of explanation. The Social Neurosciences attempt to specify the brain mechanisms that drive humans to act altruistically, in assuming that overtly identical behaviours can be driven by different motives. The research has shown that activations and functional connectivities of the Anterior Insula and the Temporoparietal Junction play specific roles in empathetic versus strategic forms of altruism, whereas the dorsolateral prefrontal cortex, among other regions, is involved in norm-oriented punitive forms of altruism. Future research studies could focus on the processing of ambiguity and conflict in pursuit of altruistic intentions.


1984 ◽  
Vol 50 (5) ◽  
pp. 434-443 ◽  
Author(s):  
Robert E. Slavin ◽  
Nancy A. Madden ◽  
Marshall Leavey

This study examines the effects on mainstreamed academically handicapped students of an instructional method, Team Assisted Individualization (TAI), that combined cooperative learning with individualized instruction in mathematics. Eighteen classes (grades 3–5) in six schools were randomly assigned to one of three conditions: TAI; individualized instruction (II) without cooperative teams; or control. The 117 academically handicapped students in these classes served as the subjects. The TAI and II methods both had significantly positive effects on the social acceptance of academically handicapped students by their nonhandicapped classmates, on their attitudes toward math, and on teacher ratings of their behavior. No achievement differences were found, although students as a whole (handicapped and nonhandicapped) in TAI and II classes achieved more than control students.


Author(s):  
Benjamin A. Devlin ◽  
Caroline J. Smith ◽  
Staci D. Bilbo

Many instances of sickness critically involve the immune system. The immune system talks to the brain in a bi-directional loop. This discourse affords the immune system immense control, such that it can influence behavior and optimize recovery from illness. These behavioral responses to infection are called sickness behaviors and can manifest in many ways, including changes in mood, motivation, or energy. Fascinatingly, most of these changes are conserved across species, and most organisms demonstrate some form of sickness behaviors. One of the most interesting sickness behaviors, and not immediately obvious, is altered sociability. Here, we discuss how the immune system impacts social behavior, by examining the brain regions and immune mediators involved in this process. We first outline how social behavior changes in response to infection in various species. Next, we explore which brain regions control social behavior and their evolutionary origins. Finally, we describe which immune mediators establish the link between illness and social behavior, in the context of both normal development and infection. Overall, we hope to make clear the striking similarities between the mechanisms that facilitate changes in sociability in derived and ancestral vertebrate, as well as invertebrate, species.


Sign in / Sign up

Export Citation Format

Share Document