scholarly journals Experimental Investigations of Three-Dimensional Effects on Cavitating Hydrofoils

1961 ◽  
Vol 5 (03) ◽  
pp. 22-43
Author(s):  
R. W. Kermeen

An investigation in the high-speed water tunnel of the hydsrodynamic characteristics of a family of three-dimensional sharp-edged hydrofoils is described. Four rectangular plan-form, 6-deg wedge profiles with aspect ratios of 4.0, 2.0, 1.0 and 0.5 were tested over a range of cavitation numbers from noncavitating to fully cavitating flow. The effects of aspect ratio on the flow and cavity configurations and on the lift, drag and pitching moment are discussed. Where data were available the results have been compared with the two-dimensional case.

2014 ◽  
Vol 58 (01) ◽  
pp. 1-19
Author(s):  
Michael J. Hughes ◽  
Young T. Shen

The behavior of the force on a rudder changes significantly after the inception of stall, requiring different mathematical formulae to compute rudder forces prior-and poststall. Determining the inception angle at which stall occurs is important for predicting the rudder force on a maneuvering ship. A method to compute the inception angle of stall on a rudder is presented in this article. The theoretical formulation is based on a flow similarity approach, which relates three-dimensional rudder stall inception with two-dimensional airfoil data. Rudders are low-aspect ratio wings, and the three-dimensional lift is based on the low-aspect ratio wing theory. The two-dimensional airfoil stall data are obtained from National Advisory Committee for Aeronautics (NACA) reports. The derived theory is first validated with wind tunnel data from foils with a NACA 0015 profile of aspect ratios 1, 2, and 3. The theory is also validated with data from foils with a NACA 0012 profile and an aspect ratio of 2, 3, and 6.


2017 ◽  
Vol 56 (3) ◽  
pp. 725-734 ◽  
Author(s):  
Zhiyuan Jiang ◽  
Mariko Oue ◽  
Johannes Verlinde ◽  
Eugene E. Clothiaux ◽  
Kultegin Aydin ◽  
...  

AbstractA simple numerical experiment was performed to investigate the result published in many papers that measurements indicate that aggregates may be well represented as oblate spheroids with mean aspect ratio (semiminor axis to semimajor axis length) of 0.6. The aspect ratio measurements are derived from two-dimensional projections of complex three-dimensional aggregates. Here, aggregates were modeled as ellipsoids with semiprincipal axes of length a, b, and c, which include oblate spheroids (a = b) as a class, and the projected aspect ratios of large numbers of two-dimensional projections of them were sampled. When sampling oblate spheroids with aspect ratio 0.6 over random orientations, the mean projected aspect ratio is 0.746. A mean projected aspect ratio of 0.6 is obtained for an oblate spheroid with aspect ratio of 0.33. When sampling randomly oriented ellipsoids with semiminor axes (b, c) varying from 0.10 to 1.00 in steps of 0.01, representing many complex shapes, the mean projected aspect ratio is 0.595, close to the measured mean projected aspect ratio of aggregates of 0.6. These experiments demonstrate that the conclusion one may safely draw from the projected aspect ratio measurements is that the mean aspect ratio of aggregates is lower than 0.6. Moreover, the projected aspect ratio distributions from measurements suggest a mixture of aggregate shapes, rather than only oblate spheroids as is often assumed.


2004 ◽  
Vol 126 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Michael E. McCormick ◽  
Luca Caracoglia

As the operational speeds of surface ships and submarines increase, so does the probability that unwanted vibrations caused by the hydroelastic instability (flutter) of the special class of hydrofoils called control surfaces. These include rudders and diving planes. By nature, these are thick symmetric hydrofoils having low aspect ratios. The 3-D tip effects become more pronounced as the aspect ratio decreases. In the present study, the added-mass and circulation terms of the 2-D flutter equations are modified to include three-dimensional effects. The modifications are performed by introducing quasi-steady coefficients to each term. The results predicted by the modified equations are found to compare well with experimental results on a towed rectangular foil having an aspect ratio of one.


1958 ◽  
Vol 2 (01) ◽  
pp. 34-67
Author(s):  
Blaine R. Parkin

An investigation in the High-Speed Water Tunnel of the two-dimensional hydrodynamic characteristics of sharp-edged hydrofoils is described. The lift, drag, and pitching moment were measured in cavitating and noncavitating flows for flat-plate and circular-arc profiles. The theory of Wu for the forces on sharp-edged profiles in full-cavity flow and the experimental results showed good agreement over a wide range of attack angles.


1957 ◽  
Vol 8 (1) ◽  
pp. 21-30 ◽  
Author(s):  
J. Williams ◽  
A. J. Alexander

SummaryThis paper describes a first attempt to establish the order of magnitude of finite aspect ratio effects for jet-flap wings. Lift, pitching moment, and drag results are presented from pressure-plotting measurements on a jet-flap model of aspect ratio slightly less than three. These experiments were complementary to two-dimensional tests carried out at the National Gas Turbine Establishment.


1975 ◽  
Vol 71 (2) ◽  
pp. 339-359 ◽  
Author(s):  
Okitsugu Furuya

Supercavitating hydrofoils of large aspect ratio operating near a free surface are investigated, assuming an inviscid and irrotational flow with the effects of gravity and surface tension neglected. The flow near the foil, treated as two-dimensional, is solved by a nonlinear free-streamline theory, then a three-dimensional ‘downwash’ correction is made using Prandtl's lifting-line theory. The strength of the lifting-line vortex is determined by information from the two-dimensional solution through a matching procedure, in which the inverse of aspect ratio is used as a small parameter for asymptotic expansions. The analysis incorporates a free-surface reference level to determine the submergence depth of the foil. The present method can be applied to any type of foil having an arbitrary planform or profile shape, including a rounded leading edge, a twist and even a small dihedral angle, within the assumption of large aspect ratio. Numerical computations made on rectangular flat-plate hydrofoils show excellent agreement of results with existing experimental data, even for large angles of attack and relatively low aspect ratios. The pressure distributions, shapes of the cavity and free surface are also calculated as a function of spanwise position.


Author(s):  
V. Vlasenko ◽  
A. Shiryaeva

New quasi-two-dimensional (2.5D) approach to description of three-dimensional (3D) flows in ducts is proposed. It generalizes quasi-one-dimensional (quasi-1D, 1.5D) theories. Calculations are performed in the (x; y) plane, but variable width of duct in the z direction is taken into account. Derivation of 2.5D approximation equations is given. Tests for verification of 2.5D calculations are proposed. Parametrical 2.5D calculations of flow with hydrogen combustion in an elliptical combustor of a high-speed aircraft, investigated within HEXAFLY-INT international project, are described. Optimal scheme of fuel injection is found and explained. For one regime, 2.5D and 3D calculations are compared. The new approach is recommended for use during preliminary design of combustion chambers.


2000 ◽  
Author(s):  
Bok-Cheol Sim ◽  
Abdelfattah Zebib

Abstract Three-dimensional, time-dependent thermocapillary convection in open cylindrical containers is investigated numerically. Results for aspect ratios (Ar) of 1, 2.5, 8, and 16 and a Prandtl number of 6.84 are obtained to compare the results of numerical simulations with ongoing experiments. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number (Re). Transition to oscillatory states occurs at critical values of Re which depend on Ar. With Ar = 1.0 and 2.5, we observe, respectively, 5 and 9 azimuthal wavetrains travelling clockwise at the free surface near the critical Re. With Ar = 8.0 and 16.0, there are substantially more, but pulsating waves near the critical Re. In the case of Ar = 16.0, which approaches the conditions in an infinite layer, our results are in good agreement with linear theory. While the critical Reynolds number decreases with increasing aspect ratio in the case of azimuthal rotating waves, it increases with increasing aspect ratio in the case of azimuthal pulsating waves. The critical frequency of temperature oscillations is found to decrease linearly with increasing Ar. We have also computed supercritical time-dependent states and find that while the frequency increases with increasing Re near the critical region, the frequency of supercritical convection decreases with Re.


2020 ◽  
Vol 25 (5) ◽  
pp. 1101-1123 ◽  
Author(s):  
Lidong Fang ◽  
Apala Majumdar ◽  
Lei Zhang

We study nematic equilibria on rectangular domains, in a reduced two-dimensional Landau–de Gennes framework. These reduced equilibria carry over to the three-dimensional framework at a special temperature. There is one essential model variable, [Formula: see text], which is a geometry-dependent and material-dependent variable. We compute the limiting profiles exactly in two distinguished limits: the [Formula: see text] 0 limit relevant for macroscopic domains and the [Formula: see text] limit relevant for nanoscale domains. The limiting profile has line defects near the shorter edges in the [Formula: see text] limit, whereas we observe fractional point defects in the [Formula: see text] 0 limit. The analytical studies are complemented by some bifurcation diagrams for these reduced equilibria as a function of [Formula: see text] and the rectangular aspect ratio. We also introduce the concept of ‘non-trivial’ topologies and study the relaxation of non-trivial topologies to trivial topologies mediated via point and line defects, with potential consequences for non-equilibrium phenomena and switching dynamics.


Sign in / Sign up

Export Citation Format

Share Document