A Method to Predict Rudder Stall Inception from Two-dimensional Airfoil Data

2014 ◽  
Vol 58 (01) ◽  
pp. 1-19
Author(s):  
Michael J. Hughes ◽  
Young T. Shen

The behavior of the force on a rudder changes significantly after the inception of stall, requiring different mathematical formulae to compute rudder forces prior-and poststall. Determining the inception angle at which stall occurs is important for predicting the rudder force on a maneuvering ship. A method to compute the inception angle of stall on a rudder is presented in this article. The theoretical formulation is based on a flow similarity approach, which relates three-dimensional rudder stall inception with two-dimensional airfoil data. Rudders are low-aspect ratio wings, and the three-dimensional lift is based on the low-aspect ratio wing theory. The two-dimensional airfoil stall data are obtained from National Advisory Committee for Aeronautics (NACA) reports. The derived theory is first validated with wind tunnel data from foils with a NACA 0015 profile of aspect ratios 1, 2, and 3. The theory is also validated with data from foils with a NACA 0012 profile and an aspect ratio of 2, 3, and 6.

Author(s):  
Amir Karimi Noughabi ◽  
Mehran Tadjfar

The aerodynamics of the low aspect ratio (LAR) wings is of outmost importance in the performance of the fixed-wing micro air vehicles (MAVs). The flow around these wings is widely influenced by three dimensional (3D) phenomena: including wing-tip vortices, formation of laminar bubble, flow separation and reattachment, laminar to turbulent transition or any combination of these phenomena. All the recent studies consider the aerodynamic characteristics of the LAR wings under the effect of the direct wind. Here we focus on the numerical study of the influence of cross-wind on flow over the inverse Zimmerman wings with the aspect ratios (AR) between 1 and 2 at Reynolds numbers between 6×104 and 105. We have considered cross-wind’s angles from 0° to 40° and angle of attack from 0° to 12°. The results show that lift and drag coefficient generally decrease when the angle of the cross-wind is increased.


1961 ◽  
Vol 5 (03) ◽  
pp. 22-43
Author(s):  
R. W. Kermeen

An investigation in the high-speed water tunnel of the hydsrodynamic characteristics of a family of three-dimensional sharp-edged hydrofoils is described. Four rectangular plan-form, 6-deg wedge profiles with aspect ratios of 4.0, 2.0, 1.0 and 0.5 were tested over a range of cavitation numbers from noncavitating to fully cavitating flow. The effects of aspect ratio on the flow and cavity configurations and on the lift, drag and pitching moment are discussed. Where data were available the results have been compared with the two-dimensional case.


2017 ◽  
Vol 56 (3) ◽  
pp. 725-734 ◽  
Author(s):  
Zhiyuan Jiang ◽  
Mariko Oue ◽  
Johannes Verlinde ◽  
Eugene E. Clothiaux ◽  
Kultegin Aydin ◽  
...  

AbstractA simple numerical experiment was performed to investigate the result published in many papers that measurements indicate that aggregates may be well represented as oblate spheroids with mean aspect ratio (semiminor axis to semimajor axis length) of 0.6. The aspect ratio measurements are derived from two-dimensional projections of complex three-dimensional aggregates. Here, aggregates were modeled as ellipsoids with semiprincipal axes of length a, b, and c, which include oblate spheroids (a = b) as a class, and the projected aspect ratios of large numbers of two-dimensional projections of them were sampled. When sampling oblate spheroids with aspect ratio 0.6 over random orientations, the mean projected aspect ratio is 0.746. A mean projected aspect ratio of 0.6 is obtained for an oblate spheroid with aspect ratio of 0.33. When sampling randomly oriented ellipsoids with semiminor axes (b, c) varying from 0.10 to 1.00 in steps of 0.01, representing many complex shapes, the mean projected aspect ratio is 0.595, close to the measured mean projected aspect ratio of aggregates of 0.6. These experiments demonstrate that the conclusion one may safely draw from the projected aspect ratio measurements is that the mean aspect ratio of aggregates is lower than 0.6. Moreover, the projected aspect ratio distributions from measurements suggest a mixture of aggregate shapes, rather than only oblate spheroids as is often assumed.


2004 ◽  
Vol 126 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Michael E. McCormick ◽  
Luca Caracoglia

As the operational speeds of surface ships and submarines increase, so does the probability that unwanted vibrations caused by the hydroelastic instability (flutter) of the special class of hydrofoils called control surfaces. These include rudders and diving planes. By nature, these are thick symmetric hydrofoils having low aspect ratios. The 3-D tip effects become more pronounced as the aspect ratio decreases. In the present study, the added-mass and circulation terms of the 2-D flutter equations are modified to include three-dimensional effects. The modifications are performed by introducing quasi-steady coefficients to each term. The results predicted by the modified equations are found to compare well with experimental results on a towed rectangular foil having an aspect ratio of one.


2007 ◽  
Vol 16 (01) ◽  
pp. 59-73 ◽  
Author(s):  
KWANG-SUP LEE ◽  
RAN HEE KIM ◽  
PREM PRABHAKARAN ◽  
DONG-YOL YANG ◽  
TAE WOO LIM ◽  
...  

Two-photon stereolithography based on photopolymerization provides the ability to fabricate real three-dimensional (3D) microstructures beyond the resolution of focal size. In this paper, our recent research focusing on improvement of spatial resolution in two-photon stereolithography is reviewed. The influence of system and fabrication conditions in relation to the spatial resolution is discussed. For small and low aspect ratio voxels, a minimum power and minimum exposure time (MPMT) scheme is introduced. During the two-photon process, an ascending technique, wherein the truncation amount of volumetric pixels is controlled, can be applied to improve the resolution of two-dimensional patterns. 3D Microfabrication with less than 100 nm resolution can be realized by using the radical quenching effect. After the two-photon process, the resolution of fabricated patterns can be refined to 60 nm by post-processing of plasma ashing.


1975 ◽  
Vol 71 (2) ◽  
pp. 339-359 ◽  
Author(s):  
Okitsugu Furuya

Supercavitating hydrofoils of large aspect ratio operating near a free surface are investigated, assuming an inviscid and irrotational flow with the effects of gravity and surface tension neglected. The flow near the foil, treated as two-dimensional, is solved by a nonlinear free-streamline theory, then a three-dimensional ‘downwash’ correction is made using Prandtl's lifting-line theory. The strength of the lifting-line vortex is determined by information from the two-dimensional solution through a matching procedure, in which the inverse of aspect ratio is used as a small parameter for asymptotic expansions. The analysis incorporates a free-surface reference level to determine the submergence depth of the foil. The present method can be applied to any type of foil having an arbitrary planform or profile shape, including a rounded leading edge, a twist and even a small dihedral angle, within the assumption of large aspect ratio. Numerical computations made on rectangular flat-plate hydrofoils show excellent agreement of results with existing experimental data, even for large angles of attack and relatively low aspect ratios. The pressure distributions, shapes of the cavity and free surface are also calculated as a function of spanwise position.


1991 ◽  
Vol 35 (04) ◽  
pp. 314-324
Author(s):  
Todd McComb

Using low-aspect-ratio flat ship theory, this paper defines a procedure to determine the position of a hull which is in equilibrium at some "fast" speed in terms of a given hull shape for the same hull at rest. This procedure is then used to find the equilibrium flow past a moving ship, when given the shape of the hull at rest. The method is then extended to find the hull configuration at various speeds based on either the configuration in the static case or at some other equilibrium speed, leading to a calculation of drag versus speed. Some general formulas and some simple examples are given.


2004 ◽  
Vol 128 (3) ◽  
pp. 492-499 ◽  
Author(s):  
Graham Pullan ◽  
John Denton ◽  
Eric Curtis

Experimental data and numerical simulations are presented from a research turbine with low aspect ratio nozzle guide vanes (NGVs). The combined effects of mechanical and aerodynamic constraints on the NGV create very strong secondary flows. This paper describes three designs of NGV that have been tested in the turbine, using the same rotor row in each case. NGV 2 used three-dimensional design techniques in an attempt to improve the performance of the datum NGV 1 blade, but succeeded only in creating an intense vortex shed from the trailing edge (as previously reported) and lowering the measured stage efficiency by 1.1% points. NGV 3 was produced to avoid the “shed vortex” while adopting a highly aft-loaded surface pressure distribution to reduce the influence of the secondary flows. The stage with NGV 3 had an efficiency 0.5% points greater than that with NGV 1. Detailed comparisons between experiment and computations, including predicted entropy generation rates, are used to highlight the areas where the loss reduction has occurred and hence to quantify the effects of employing highly aft-loaded NGVs.


2000 ◽  
Author(s):  
Bok-Cheol Sim ◽  
Abdelfattah Zebib

Abstract Three-dimensional, time-dependent thermocapillary convection in open cylindrical containers is investigated numerically. Results for aspect ratios (Ar) of 1, 2.5, 8, and 16 and a Prandtl number of 6.84 are obtained to compare the results of numerical simulations with ongoing experiments. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number (Re). Transition to oscillatory states occurs at critical values of Re which depend on Ar. With Ar = 1.0 and 2.5, we observe, respectively, 5 and 9 azimuthal wavetrains travelling clockwise at the free surface near the critical Re. With Ar = 8.0 and 16.0, there are substantially more, but pulsating waves near the critical Re. In the case of Ar = 16.0, which approaches the conditions in an infinite layer, our results are in good agreement with linear theory. While the critical Reynolds number decreases with increasing aspect ratio in the case of azimuthal rotating waves, it increases with increasing aspect ratio in the case of azimuthal pulsating waves. The critical frequency of temperature oscillations is found to decrease linearly with increasing Ar. We have also computed supercritical time-dependent states and find that while the frequency increases with increasing Re near the critical region, the frequency of supercritical convection decreases with Re.


Sign in / Sign up

Export Citation Format

Share Document