Hydrostatic Tests of Two Prolate Spheroidal Shells

1965 ◽  
Vol 9 (03) ◽  
pp. 77-104
Author(s):  
John J. Healey

Two machined models were collapsed under external hydrostatic pressure to determine the elastic buckling strength of complete prolate spheroidal shells. The test results demonstrated that collapse pressures 40 percent greater than predicted by available theory can be achieved for a prolate spheroidal shell with a major to minor axis ratio of 3.0 and a thickness to diameter ratio of 0.015.

2017 ◽  
Vol 25 (2) ◽  
pp. 161-172 ◽  
Author(s):  
Kazuya Mitsui ◽  
Atsushi Sato

Abstract In Japan, built-up member composed with light gauge is used for studs of shear wall. Flexural buckling stress of built-up compression member is evaluated by effective slenderness ratio. The effective slenderness ratio of light gauge built-up compression member is proposed for heavy sections; however, it is not verified that it can be adopted in light gauge. In this paper, full scale testing of light gauge built-up members are conducted. From the test results, it is shown that current Standard overestimates the buckling strength. Based on energy equilibrium theory, modified effective slenderness ratio for light gauge built-up member is derived. The validity of the modified effective slenderness ratio is shown with test results.


1956 ◽  
Vol 23 (3) ◽  
pp. 351-358
Author(s):  
G. D. Galletly ◽  
R. Bart

Abstract Using classical small-deflection theory, an investigation was made of the effects of boundary conditions and initial out-of-roundness on the strength of cylinders subject to external hydrostatic pressure. The equations developed in this paper for initially out-of-round cylinders with clamped ends, and a slightly modified form of the equations previously derived by Bodner and Berks for simply supported ends, were applied to some actual test results obtained from nine steel cylinders which had been subjected to external hydrostatic pressure. Three semiempirical methods for determining the initial out-of-roundness of the cylinders also were investigated and these are described in the paper. The investigation indicates that if the initial out-of-roundness is determined in a manner similar to that suggested by Holt then the correlation between the experimental and theoretical results is quite good. The investigation also indicates that while the difference in collapse pressures for clamped-end and simply supported perfect cylinders may be quite considerable, this does not appear to be the case when initial out-of-roundnesses of a practical magnitude are considered.


1950 ◽  
Vol 17 (3) ◽  
pp. 324-326
Author(s):  
E. Creutz

Abstract In the theory of elasticity equations have been derived by Sturm and Timoshenko for the crushing strength of long tubes subjected to external hydrostatic pressure. These equations have been found to fit experimental data on steel tubes, provided the length is several times the diameter, and the ratio of diameter to wall thickness exceeds about 30. No similar test data had been taken on aluminum tubes so an experimental study was carried out to determine whether the equations mentioned would apply. No satisfactory correlation was found to exist, but a simple equation was derived which is well within the reproducibility of the test results.


Author(s):  
Hao Wu ◽  
Shreyes N. Melkote

The ductile-to-brittle cutting mode transition in single grit diamond scribing of monocrystalline silicon is investigated in this paper. Specifically, the effects of scriber tip geometry, coefficient of friction, and external hydrostatic pressure on the critical depth of cut associated with ductile-to-brittle transition and crack generation are studied via an eXtended Finite Element Method (XFEM) based model, which is experimentally validated. Scribers with a large tip radius are shown to produce lower tensile stresses and a larger critical depth of cut compared with scribers with a sharp tip. Spherical tipped scribers are shown to generate only surface cracks, while sharp tipped scribers (conical, Berkovich and Vickers) are found to create large subsurface tensile stresses, which can lead to nucleation of subsurface median/lateral cracks. Lowering the friction coefficient tends to increase the critical depth of cut and hence the extent of ductile mode cutting. The results also show that larger critical depth of cut can be obtained under external hydrostatic pressure. This knowledge is expected to be useful in optimizing the design and application of the diamond coated wire employed in fixed abrasive diamond wire sawing of photovoltaic silicon wafers.


2021 ◽  
Vol 227 ◽  
pp. 108633
Author(s):  
Muhammad Imran ◽  
Dongyan Shi ◽  
Lili Tong ◽  
Ahsan Elahi ◽  
Muqeem Uddin

Sign in / Sign up

Export Citation Format

Share Document