Blockage with a Free Surface

1976 ◽  
Vol 20 (04) ◽  
pp. 199-203
Author(s):  
J. N. Newman

The occurrence of blockage, or a jump in the velocity potential between the upstream and downstream infinities, is well known for steady two-dimensional flow past a body in a rigid channel. This paper considers the analogous situation where there is a free surface, as in the wave resistance problem for submerged two-dimensional bodies in a fluid of finite depth. It is shown that blockage occurs in spite of the free surface, taking values which depend not only on the dipole moment but also upon the Froude number based on depth. The occurrence of blockage, in the present context, has a bearing primarily upon the correct formulation of far-field radiation conditions for steady flows with finite depth.

1991 ◽  
Vol 230 ◽  
pp. 231-243 ◽  
Author(s):  
Walter Craig ◽  
Peter Sternberg

This article considers certain two-dimensional, irrotational, steady flows in fluid regions of finite depth and infinite horizontal extent. Geometrical information about these flows and their singularities is obtained, using a variant of a classical comparison principle. The results are applied to three types of problems: (i) supercritical solitary waves carrying planing surfaces or surfboards, (ii) supercritical flows past ship hulls and (iii) supercritical interfacial solitary waves in systems consisting of two immiscible fluids.


1951 ◽  
Vol 2 (4) ◽  
pp. 254-271 ◽  
Author(s):  
L. G. Whitehead ◽  
L. Y. Wu ◽  
M. H. L. Waters

SummmaryA method of design is given for wind tunnel contractions for two-dimensional flow and for flow with axial symmetry. The two-dimensional designs are based on a boundary chosen in the hodograph plane for which the flow is found by the method of images. The three-dimensional method uses the velocity potential and the stream function of the two-dimensional flow as independent variables and the equation for the three-dimensional stream function is solved approximately. The accuracy of the approximate method is checked by comparison with a solution obtained by Southwell's relaxation method.In both the two and the three-dimensional designs the curved wall is of finite length with parallel sections upstream and downstream. The effects of the parallel parts of the channel on the rise of pressure near the wall at the start of the contraction and on the velocity distribution across the working section can therefore be estimated.


1998 ◽  
Vol 356 ◽  
pp. 149-153 ◽  
Author(s):  
MICHAEL S. LONGUET-HIGGINS

For two-dimensional flow there is a simple relation between the vorticity at a stress-free surface and the surface curvature. In this note the relation is generalized to flow in three dimensions. It is shown that in addition to a component of vorticity perpendicular to the flow there is also a component parallel to the direction of flow. The latter vanishes only at an umbilical point or when the flow is in one of the two principal directions of curvature.


Author(s):  
Jeonghwa Seo ◽  
Bumwoo Han ◽  
Shin Hyung Rhee

Effects of free surface on development of turbulent boundary layer and wake fields were investigated. By measuring flow field around a surface piercing cylinder in various advance speed conditions in a towing tank, free surface effects were identified. A towed underwater Stereoscopic Particle Image Velocimetry (SPIV) system was used to measure the flow field under free surface. The cross section of the test model was water plane shape of the Wigley hull, of which longitudinal length and width were 1.0 m and 100 mm, respectively. With sharp bow shape and slender cross section, flow separation was not expected in two-dimensional flow. Flow fields near the free-surface and in deep location that two-dimensional flow field was expected were measured and compared to identify free-surface effects. Some planes perpendicular to longitudinal direction near the model surface and behind the model were selected to track development of turbulent boundary layer. Froude numbers of the test conditions were from 0.126 to 0.40 and corresponding Reynolds numbers were from 395,000 to 1,250,000. In the lowest Froude number condition, free-surface wave was hardly observed and only free surface effects without surface wave could be identified while violent free-surface behavior due to wave-induced separation dominated the flow fields in the highest Froude number condition. From the instantaneous velocity fields, Time-mean velocity, turbulence kinetic energy, and flow structure derived by proper orthogonal decomposition (POD) were analyzed. As the free-surface effect, development of retarded wake, free-surface waves, and wave-induced separation were mainly observed.


The present note extends the theory of fish propulsion by E. H. Smith & D. E. Stone, taking into account the wake effect which was not discussed in the original paper. The motion of a fish is simulated by a flexible plate of infinitesimal thickness, infinite span, and constant chord length, moving in the two-dimensional flow field of an ideal incompressible liquid. The perturbation velocity potential for the flexible plate is obtained by solving the Laplace equation in an elliptic cylindrical co-ordinate system, while the wake velocity potential follows from the application of a method which is due to Theodorsen. The results are shown to be identical with those derived previously by Siekmann. A simple example is given for illustration and results predicted by theory are compared with experimental data.


1975 ◽  
Vol 69 (2) ◽  
pp. 405-416 ◽  
Author(s):  
G. Dagan

The linearized theory of free-surface gravity flow past submerged or floating bodies is based on a perturbation expansion of the velocity potential in the slenderness parameter e with the Froude number F kept fixed. It is shown that, although the free-wave amplitude and the associated wave resistance tend to zero as F → 0, the linearized solution is not uniform in this limit: the ratio between the second- and first-order terms becomes unbounded as F → 0 with ε fixed. This non-uniformity (called ‘the second Froude number paradox’ in previous work) is related to the nonlinearity of the free-surface condition. Criteria for uniformity of the thin-body expansion, combining ε and F, are derived for two-dimensional flows. These criteria depend on the shape of the leading (and trailing) edge: as the shape becomes finer the linearized solution becomes valid for smaller F.Uniform first-order approximations for two-dimensional flow past submerged bodies are derived with the aid of the method of co-ordinate straining. The straining leads to an apparent displacement of the most singular points of the body contour (the leading and trailing edges for a smooth shape) and, therefore, to an apparent change in the effective Froude number.


Author(s):  
E. O. Tuck ◽  
S. T. Simakov

AbstractIn two-dimensional flow past a body close to a free surface, the upwardly diverted portion may separate to form a splash. We model the nose of such a body by a semi-infinite obstacle of finite draft with a smoothly curved front face. This problem leads to a nonlinear integral equation with a side condition, a separation condition and an integral constraint requiring the far-upstream free surface to be asymptotically plane. The integral equation, called Villat's equation, connects a natural parametrisation of the curved front face with the parametrisation by the velocity potential near the body. The side condition fixes the position of the separation point, whereas the separation condition, known as the Brillouin-Villat condition, imposes a continuity relation to be satisfied at separation. For the described flow we derive the Brillouin-Villat condition in integral form and give a numerical solution to the problem using a polygonal approximation to the front face.


2017 ◽  
Vol 825 ◽  
pp. 961-1001 ◽  
Author(s):  
V. Kozlov ◽  
N. Kuznetsov ◽  
E. Lokharu

We consider the nonlinear problem of steady gravity-driven waves on the free surface of a two-dimensional flow of an inviscid, incompressible fluid (say, water). The water motion is supposed to be rotational with a Lipschitz continuous vorticity distribution, whereas the flow of finite depth is assumed to be unidirectional. We verify the Benjamin–Lighthill conjecture for flows with values of Bernoulli’s constant close to the critical one. For this purpose it is shown that a set of near-critical waves consists only of Stokes and solitary waves provided their slopes are bounded by a constant. Moreover, the subset of waves with crests located on a fixed vertical is uniquely parametrised by the flow force, which varies between its values for the supercritical and subcritical shear flows of constant depth. There exists another parametrisation for this set; it involves wave heights varying between the constant depth of the subcritical shear flow and the height of a solitary wave.


1950 ◽  
Vol 46 (3) ◽  
pp. 453-468 ◽  
Author(s):  
A. Coombs

1. Many investigations have been made to determine the wave resistance acting on a body moving horizontally and uniformly in a heavy, perfect fluid. Lamb obtained a first approximation for the wave resistance on a long circular cylinder, and this was later confirmed to be quite sufficient over a large range. In 1926 and 1928, Havelock (4, 5) obtained a second approximation for the wave resistance and a first approximation for the vertical force or lift. Later, in 1936(6), he gave a complete analytical solution to this problem, in which the forces were expressed in the form of infinite series in powers of the ratio of the radius of the cylinder to the depth of the centre below the free surface of the fluid. General expressions for the wave resistance and lift of a cylinder of arbitrary cross-section were found by Kotchin (7) using integral equations, and the special case of a flat plate was evaluated. He continued with a discussion of the motion of a three-dimensional body. More recently, Haskind (3) has examined the same problem when the stream has a finite depth.


Sign in / Sign up

Export Citation Format

Share Document