Water Entry of a Wedge with Finite Deadrise Angle

2001 ◽  
Vol 46 (01) ◽  
pp. 39-51 ◽  
Author(s):  
O. M. Faltinsen ◽  
Jin Wu

The paper presents the results of an experimental investigation of the nonlinear effects on the vertical motions and loads on a containership model advancing in irregular waves. The experimental data are compared with numerical results from a nonlinear time domain strip method. The tests were carried out in a seakeeping tank using three sea states with significant wave heights of 4.2 m, 6.1 m, and 9.9 m, thus including very severe conditions. The measured responses include the absolute and relative motions, vertical accelerations, and cross-sectional loads at midship and ¼ Lpp from the forward perpendicular. The statistics of the experimental records demonstrate partly the nonlinear behavior of the responses, especially of the structural loads. The probability distributions of the positive and negative peaks show that the heave and pitch motions are only slightly asymmetric and their distributions compare well with the Rayleigh distribution. The vertical loads present distributions of peaks that are highly asymmetric and deviate from the Rayleigh distribution. Comparisons between simulated results and experimental data show that the numerical model is able to represent the nonlinear characteristics of the responses.

2004 ◽  
Vol 48 (02) ◽  
pp. 148-167 ◽  
Author(s):  
N. Fonseca ◽  
C. Guedes Soares

The paper presents the results of an experimental investigation of the nonlinear effects on the vertical motions and loads on a containership model advancing in irregular waves. The experimental data are compared with numerical results from a nonlinear time domain strip method. The tests were carried out in a seakeeping tank using three sea states with significant wave heights of 4.2 m, 6.1 m, and 9.9 m, thus including very severe conditions. The measured responses include the absolute and relative motions, vertical accelerations, and cross-sectional loads at midship and ¼ Lpp from the forward perpendicular. The statistics of the experimental records demonstrate partly the nonlinear behavior of the responses, especially of the structural loads. The probability distributions of the positive and negative peaks show that the heave and pitch motions are only slightly asymmetric and their distributions compare well with the Rayleigh distribution. The vertical loads present distributions of peaks that are highly asymmetric and deviate from the Rayleigh distribution. Comparisons between simulated results and experimental data show that the numerical model is able to represent the nonlinear characteristics of the responses.


1970 ◽  
Vol 1 (12) ◽  
pp. 25 ◽  
Author(s):  
J. Ian Collins

Utilizing the hydrodynamic relationships for shoaling and refraction of waves approaching a shoreline over parallel bottom contours a procedure is developed to transform an arbitrary probability density of wave characteristics in deep water into the corresponding breaking characteristics in shallow Water A number of probability distributions for breaking wave characteristics are derived m terms of assumed deep water probability densities of wave heights wave lengths and angles of approach Some probability densities for wave heights at specific locations in the surf zone are computed for a Rayleigh distribution in deep water The probability computations are used to derive the expectation of energy flux and its distribution.


Author(s):  
Alexander V. Babanin

Design criteria in ocean engineering, whether this is one in 50 years or one in 5000 years event, are hardly ever based on measurements, and rather on statistical distributions of relevant metocean properties. Of utmost interest is the tail of these distributions, that is rare events such as the highest waves with low probability. Engineers have long since realised that the superposition of linear waves with narrow-banded spectrum as depicted by the Rayleigh distribution underestimates the probability of extreme wave crests, and is not adequate for wave heights either, which is a critical shortcoming as far as the engineering design is concerned. Ongoing theoretical and experimental efforts have been under way for decades to address this issue. Here, we will concentrate on short-term statistics, i.e. probability of crests/heights of individual waves. Typical approach is to treat all possible waves in the ocean or at a particular location as a single ensemble for which some comprehensive solution can be found. The oceanographic knowledge, however, now indicates that no single and united comprehensive solution is possible. Probability distributions in different physical circumstances should be different, and by combining them together the inevitable scatter is introduced. The scatter and the accuracy will not improve by increasing the bulk data quality and quantity, and it hides the actual distribution of extreme events. The groups have to be separated and their probability distributions treated individually. The paper offers a review of physical conditions, from simple one-dimensional trains of free waves to realistic two-dimensional wind-forced wave fields, in order to understand where different probability distributions can be expected. If the wave trains/fields in the wave records are stable, distributions for the second-order waves should serve well. If modulational instability is active, rare extreme events not predicted by the second-order theory should become possible. This depends on wave steepness, bandwidth and directionality. Mean steepness also defines the wave breaking and therefore the upper limit for wave heights in this group of conditions. Under hurricane-like circumstances, the instability gives way to direct wind forcing, and yet another statistics is to be expected.


Author(s):  
Leonardo Nascimento ◽  
Luis Sagrilo ◽  
Gilberto Ellwanger

In the assessment of marine structures in shallow waters domain it is important to take into account the nonlinear (or non-Gaussian) nature of the irregular waves when predicting short and long-term responses of such structures. Other sources of nonlinearities in the response are also present due to some nonlinear effects such as: wet-dry surface effects, wind force on dry parts of the structure, drag term in Morison hydrodynamic force equation, etc. The estimation of the characteristic short-term extreme responses requires the extreme value analysis of a non-Gaussian stochastic process. There are many approaches available in literature which can be employed, such as: Hermite-based model, Weibull-fitting model, etc. In this paper two distinct Weibull fitting models (one based on the first two and other based on the first three moments of the response peaks sample) and Hermite-based models using both conventional and linear moments (L-moments) are investigated for the prediction of extreme short-term response of mono-column wind tower installed in a water depth of 20m and subject to wave, current and wind loading. The tower responses (load effects) time-histories are obtained by means of a time-domain finite element-based program using 3-D geometric nonlinear beam elements developed for the dynamic analysis of this type of structure. In this program, the nonlinear behavior of the irregular waves is modelled by means of the second order Sharma and Dean theory [1] and the wind forces are represented by a very simplified load model based on wind velocity simulated time-series and the obstruction area of the tower and blades.


Author(s):  
Stefan G. Siegel ◽  
Casey Fagley ◽  
Marcus Römer ◽  
Thomas McLaughlin

The ability of a Cycloidal Wave Energy Converter (CycWEC) to cancel irregular deep ocean waves is investigated in a 1:300 scale wave tunnel experiment. A CycWEC consists of one or more hydrofoils attached equidistant to a shaft that is aligned parallel to the incoming waves. The entire device is fully submerged in operation. Wave cancellation requires synchronization of the rotation of the CycWEC with the incoming waves, as well as adjustment of the pitch angle of the blades in proportion to the wave height. The performance of a state estimator and controller that achieve this objective were investigated, using the signal from a resistive wave gage located up-wave of the CycWEC as input. The CycWEC model used for the present investigations features two blades that are adjustable in pitch in real time. The performance of the CycWEC for both a superposition of two harmonic waves, as well as irregular waves following a Bretschneider spectrum is shown. Wave cancellation efficiencies as determined by wave measurements of about 80% for the majority of the cases are achieved, with wave periods varying from 0.4s to 0.75s and significant wave heights of Hs ≈ 20mm. This demonstrates that the CycWEC can efficiently interact with irregular waves, which is in good agreement with earlier results obtained from numerical simulations.


Author(s):  
Mohamed Latheef ◽  
Chris Swan

This paper concerns the statistical distribution of both wave crest elevations and wave heights in deep water. A new set of laboratory observations undertaken in a directional wave basin located in the Hydrodynamics laboratory in the Department of Civil and Environmental Engineering at Imperial College London is presented. The resulting data were analysed and compared to a number of commonly applied statistical distributions. In respect of the wave crest elevations the measured data is compared to both linear and second-order order distributions, whilst the wave heights were compared to the Rayleigh distribution, the Forristall (1978) [1] empirical distribution and the modified Glukhovskiy distribution ([2] and [3]). Taken as a whole, the data confirms that the directionality of the sea state is critically important in determining the statistical distributions. For example, in terms of the wave crest statistics effects beyond second-order are most pronounced in uni-directional seas. However, if the sea state is sufficiently steep, nonlinear effects arising at third order and above can also be significant in directionally spread seas. Important departures from Forristall’s empirical distribution for the wave heights are also identified. In particular, the data highlights the limiting effect of wave breaking in the most severe seas suggesting that many of the commonly applied design solutions may be conservative in terms of crest height and wave height predictions corresponding to a small (10−4) probability of exceedance.


2004 ◽  
Vol 48 (02) ◽  
pp. 118-147 ◽  
Author(s):  
N. Fonseca ◽  
C. Guedes Soares

The nonlinear vertical responses of a containership advancing in regular waves are investigated experimentally. The paper presents the results of an experimental program carried out in a seakeeping tank with a model of the ITTC S-175 containership in head regular waves. All the wave frequency ranges of interest were tested, and for each wave frequency several wave amplitudes were used ranging from small to large amplitude. In this way the influence of the wave amplitude on the nonlinear characteristics of the responses was assessed. The measured responses include the absolute and relative motions, vertical accelerations, and cross-sectional loads at midship and ¼ Lpp from the forward perpendicular. Strong nonlinear effects were detected, especially on the loads, which can be identified by the variation of the transfer function with the wave amplitude, the asymmetry of the time histories, and the presence of higher harmonics.


2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


Author(s):  
AbdAlla M. AbdAlla ◽  
AbdAlla M. AbdAlla ◽  
Abkar A. Iraqi ◽  
Abkar A. Iraqi ◽  
Magdy M. Farag ◽  
...  

Sea level and wave data at Salalah coast (Oman) were used to simulate nearshore waves and current during the tropical cyclone ARB01 (9 May2002). STWAVE model (Steady State Spectral Wave) was applied for nearshore wave simulation, while M2D model ((Two-Dimensional Depth Averaged circulation model) was used to simulate nearshore current. The results of simulations (taking into account the mutual effects of both current and waves) showed that: The significant wave heights generally decrease from about 6m at the domain boundary to about 1 m close to the coast. The wave heights during the ebb period were higher than that during the flood period by about 1.5m. Along Salalah coast, higher waves were found along the eastern side of the domain. This is because the shielding effect of breakwater, which protect the western part of the coast from high waves. Relatively Strong current with values up to 1.5 ms-1 were found in the nearshore region during both ebb and flood periods. The M2D model results also showed cyclonic circulations during these periods which help in the renewal of harbor waters. Generally, the model results showed good agreements with observations in the investigated area.


Sign in / Sign up

Export Citation Format

Share Document