Characterization of multidrug-resistant Aeromonas hydrophila isolated from diseased rohu Labeo rohita (Hamilton, 1822) with associated virulence genes

Author(s):  
M.S. Nithin ◽  
K.B. Kushala ◽  
S.B. Dheeraj ◽  
H. Harshitha ◽  
S.K. Girisha ◽  
...  
2013 ◽  
Vol 34 (5) ◽  
pp. 1325-1334 ◽  
Author(s):  
P.K. Sahoo ◽  
Sweta Das ◽  
Kanta Das Mahapatra ◽  
Jatindra Nath Saha ◽  
Matthew Baranski ◽  
...  

2012 ◽  
Vol 32 (8) ◽  
pp. 701-706 ◽  
Author(s):  
Samira T.L. Oliveira ◽  
Gisele Veneroni-Gouveia ◽  
Mateus M. Costa

Multiple factors can be involved in the virulence processes of Aeromonas hydrophila. The objective of the present paper was to verify the presence of aerolysin, hidrolipase, elastase and lipase virulence genes through the polymerase chain reaction (PCR) in A. hydrophila isolates obtained from fish of the São Francisco River Valley, and to evaluate virulence according to the presence of these genes in Nile tilapia fingerlings. One hundred and fourteen isolates from the bacteria were used. DNA was heat extracted and PCR undertaken using specific primers described in the literature. For in vivo tests Nile tilapia fingerlings were used. From the PCR tests, negative isolates for all genes tested were selected, positive isolates for two genes (aerolysin and elastase) and positive for the four genes tested. These were inoculated at a concentration of 10(8) UFC/ml into the tilapias, considered as treatments; another group of animals was used as control (with inoculation of saline solution). In all, 12 distinct standards regarding the presence of virulence factors in isolates from A. hydrophila, were observed. Of the 114 isolates analyzed, 100 (87.72%) presented at least one of the virulence factors under study. The virulence factors were widely distributed among the A. hydrophila isolates. Aerolysin was the most frequent virulence factor present in the isolates analyzed. A. hydrophila led to the mortality of the Nile tilapia fingerlings, regardless of the absence or quantity of virulence genes tested.


2019 ◽  
Vol 13 (06) ◽  
pp. 465-472
Author(s):  
Ulises Hernández-Chiñas ◽  
Alejandro Pérez-Ramos ◽  
Laura Belmont-Monroy ◽  
María E Chávez-Berrocal ◽  
Edgar González-Villalobos ◽  
...  

Introduction: Uropathogenic Escherichia coli (UPEC) are the main etiological agent of urinary tract infections (UTIs). Association between different serotypes and UTIs is known, however, some strains are incapable to be serotyped. The aim of this work was to study bthe phenotypical and genotypical characteristics of 113 non-typeable (NT) and auto-agglutinating (AA) E. coli strains, isolated from UTIs in children and adults. Methodology: The 113 UPEC strains were analyzed by PCR assays using specific primers to determine their serogroups, fimH, papC, iutA, sat, hlyCA and cnf1, virulence associated genes, and chuA, yjaA and TSPE4.C2 for phylogroup determination. Additionally, the diffusion disk method was performed to evaluate the antimicrobial resistance to 18 antimicrobial agents. Results: Using the PCR assay, 63% (71) of the strains were genotyped showing O25 and O75 as the most common serogroups. The virulence genes fimH (86%) and iutA (74%) were the most prevalent, in relation to the phylogroups the commensal (A and B1) and virulent (B2 and D) showed similar frequencies (P > 0.05). The antimicrobial susceptibility test showed a high percentage (73%) of multidrug-resistant strains. Conclusions: The genotyping allowed identifying the serogroup in many of the strains that could not be typed by traditional serology. The strains carried virulence genes and were multidrug-resistant in both, commensal and virulent phylogroups. Our findings revealed that, in addition to the classical UPEC serogroups, there are pathogenic serogroups not reported yet.


2019 ◽  
Author(s):  
Haley Sanderson ◽  
Rodrigo Ortega-Polo ◽  
Rahat Zaheer ◽  
Noriko Goji ◽  
Kingsley K. Amoako ◽  
...  

Abstract Background Wastewater treatment plants (WWTPs) are considered hotspots for the environmental dissemination of antimicrobial resistance (AMR) determinants. Vancomycin-Resistant Enterococcus (VRE) are candidates for gauging the degree of AMR bacteria in wastewater. E. faecalis and E. faecium are recognized indicators of fecal contamination in water. Genome comparisons of enterococci isolated from a conventional activated sludge (CAS) and biological aerated filter (BAF) WWTPs were conducted. Results VRE isolates, including E. faecalis (n=24), E. faecium (n=11), E. casseliflavus (n=2) and E. gallinarum (n=2), were selected for sequencing based on source, species and AMR phenotype. The pangenomes of E. faecium and E. faecalis were both open. The genomic fraction related to mobilome had a positive correlation with genome size in E. faecium (p < 0.001) and E. faecalis (p < 0.001) and with the number of AMR genes in E. faecium (p = 0.005). The AMR phenotype generally aligned with genotype. Genes conferring vancomycin resistance, including vanA and vanM (E. faecium), vanG (E. faecalis), and vanC (E. casseliflavus/E. gallinarum), were detected in 20 genomes. The most prominent groups of functional AMR genes were efflux pumps and transporters. A minimum of 16, 6, 5 and 3 virulence genes were detected in E. faecium, E. faecalis, E. casseliflavus and E. gallinarum genomes, respectively. Virulence genes were more common in E. faecalis and E. faecium, than E. casseliflavus and E. gallinarum. A number of mobile genetic elements were shared among species. Functional CRISPR/Cas arrays were detected in 13 E. faecalis genomes, with all but one also containing a prophage. The lack of a functional CRISPR/Cas arrays was associated with multi-drug resistance in E. faecium. Phylogenetic analysis demonstrated differential clustering of isolates based on source but not based on WWTP. Genes related to phage and CRISPR/Cas arrays could potentially serve as environmental biomarkers. Conclusions There was no discernable difference between enterococcal genomes from the CAS and BAF WWTPs either before or after treatment. Understanding the impact of WWTPs on the dissemination of AMR in the environment will require knowledge of the mobility and upregulation of genes and the characterization of mobilomes within WWTPs and surrounding environments.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mingze Cao ◽  
Weiwei Wang ◽  
Liwei Zhang ◽  
Guanhui Liu ◽  
Xuzheng Zhou ◽  
...  

Abstract Background The widespread distribution of antimicrobial-resistant Shigella has become a recurrent challenge in many parts of the developing world. Previous studies indicate that the host of Shigella has expanded from humans to animals. This study aimed to investigate the prevalence of fluoroquinolone resistance and associated molecular characterization of S. dysenteriae 1 isolated from calves. Results All 38 unduplicated S. dysenteriae 1 isolates were collected from calves in Gansu Province from October 2014 to December 2016. According to MLST and PFGE analysis, these isolates were separated into 4 and 28 genotypes, respectively. The most common STs identified were ST228 (34.21%, 13/38) and ST229 (39.47%, 15/38), which were first found in the present study. All isolates harbored virulence genes, and the incidence of the seven virulence genes were ipaH (100%), ipaBCD (92.11%), stx (73.68%), ial (57.89%), sen (28.95%), set1A and set1B (0%). According to the results of antimicrobial susceptibilities, 76.32% (29/38) were resistant to fluoroquinolone and showed multidrug resistance. In a study on the polymorphism of quinolone resistance–determining region (QRDR) of gyrA/B and parC/E genes, we identified two mutations in gyrA (Ser83 → Leu and Asp87 → Asn) and parC (Ser80 → Ile and Ser83 → Leu), respectively. Among them, 55.17% (16/29) of resistant strains had the gyrA point mutations (Ser83 → Leu) and parC point mutation (Ser83 → Leu). Moreover, 41.38% (12/29) of isolates had all five point mutations of gyrA and parC. In addition, the prevalence of the plasmid-mediated quinolone resistance (PMQR) determinant genes was also investigated. All 29 fluoroquinolone-resistant isolates were positive for the aac (6′)-Ib-cr gene but negative for qepA, except for SD001. In addition, only 6 (20.69%, 6/29) isolates harbored the qnr gene, including two with qnrB (6.90%, 2/29) and four with qnrS (13.79%, 4/29). Conclusion Given the increased common emergence of multidrug resistant isolates, uninterrupted surveillance will be necessary to understand the actual epidemic burden and control this infection.


2020 ◽  
Author(s):  
Mingze Cao ◽  
Weiwei Wang ◽  
Liwei Zhang ◽  
Guanhui Liu ◽  
Xuzheng Zhou ◽  
...  

Abstract Background: The widespread distribution of antimicrobial-resistant Shigella has become a recurrent challenge in many parts of the developing world. Previous studies indicate that the host of Shigella has expanded from humans to animals. This study aimed to investigate the prevalence of fluoroquinolone resistance and associated molecular characterization of S. dysenteriae 1 isolated from calves. Results: All 38 unduplicated S. dysenteriae 1 isolates were collected from calves in Gansu Province from October 2014 to December 2016. According to MLST and PFGE analysis, these isolates were separated into 4 and 28 genotypes, respectively. The most common STs identified were ST228 (34.21%, 13/38) and ST229 (39.47%, 15/38), which were first found in the present study. All isolates harbored virulence genes, and the incidence of the seven virulence genes were ipaH (100%), ipaBCD (92.11%), stx (73.68%), ial (57.89%), sen (28.95%), set1A and set1B (0%). According to the results of antimicrobial susceptibilities, 76.32% (29/38) were resistant to fluoroquinolone and showed multidrug resistance. In a study on the polymorphism of quinolone resistance–determining region (QRDR) of gyrA/B and parC/E genes, we identified two mutations in gyrA (Ser83→Leu and Asp87→Asn) and parC (Ser80→Ile and Ser83→Leu), respectively. Among them, 55.17% (16/29) of resistant strains had the gyrA point mutations (Ser83→Leu) and parC point mutation (Ser83→Leu). Moreover, 41.38% (12/29) of isolates had all five point mutations of gyrA and parC. In addition, the prevalence of the plasmid-mediated quinolone resistance (PMQR) determinant genes was also investigated. All 29 fluoroquinolone-resistant isolates were positive for the aac(6’)-Ib-cr gene but negative for qepA, except for SD001. In addition, only 6 (20.69%, 6/29) isolates harbored the qnr gene, including two with qnrB (6.90%, 2/29) and four with qnrS (13.79%, 4/29). Conclusion: Given the increased common emergence of multidrug resistant isolates, uninterrupted surveillance will be necessary to understand the actual epidemic burden and control this infection.


2014 ◽  
Vol 63 (7) ◽  
pp. 903-910 ◽  
Author(s):  
Santanu Ghosh ◽  
Gururaja P. Pazhani ◽  
Swapan Kumar Niyogi ◽  
James P. Nataro ◽  
Thandavarayan Ramamurthy

Phenotypic and genetic characteristics of Shigella spp. isolated from diarrhoeal and asymptomatic children aged up to 5 years were analysed in this study. In total, 91 and 17 isolates were identified from diarrhoeal (case) and asymptomatic (control) children, respectively. All the isolates were tested for antimicrobial resistance, the presence of integrons, plasmid-mediated quinolone resistance (PMQR), virulence-associated genes and Shigella pathogenicity island (SH-PAI). The majority of the Shigella spp. from cases (68.1 %) and controls (82.3 %) were found to be resistant to fluoroquinolones. Integron carriage was detected more in cases (76.9 %) than in controls (35.5 %). Atypical class 1 integron was detected exclusively in Shigella flexneri from cases but not from the controls. PMQR genes such as aac(6′)-Ib-cr and qnrS1 were detected in 82.4  and 14.3 % of the isolates from cases and in 53 and 17.6 % in controls, respectively. Shigella isolates from cases as well as from controls were positive for the invasive plasmid antigen H-encoding gene ipaH. The other virulence genes such as virF, sat, setA, setB, sen and ial were detected in Shigella isolates in 80.2, 49.4, 27.4, 27.4, 80.2 and 79.1 % of cases and in 64.7, 52.9, 17.6, 17.6, 64.7 and 64.7 % of controls, respectively. The entire SH-PAI was detected in S. flexneri serotype 2a from cases and controls. In an isolate from a control child, the SH-PAI was truncated. Integrons, PMQR and virulence-encoding genes were detected more frequently in cases than in controls. In diarrhoea endemic areas, asymptomatic carriers may play a crucial role in the transmission of multidrug-resistant Shigella spp. with all the putative virulence genes.


2020 ◽  
Author(s):  
Zhen Zhu ◽  
Mingze Cao ◽  
Weiwei Wang ◽  
Liwei Zhang ◽  
Guanhui Liu ◽  
...  

Abstract Background: The widespread distribution of antimicrobial-resistant Shigella has become a recurrent challenge in many parts of the developing world. Previous studies indicate that the host of Shigella has expanded from humans to animals. This study aimed to investigate the prevalence of fluoroquinolone resistance and associated molecular characterization of S. dysenteriae 1 isolated from calves. Methods and Results: All 38 unduplicated S. dysenteriae 1 isolates were collected from calves in Gansu Province from October 2014 to December 2016. According to MLST and PFGE analysis, these isolates were separated into 4 and 28 genotypes, respectively. The most common STs identified were ST228 (34.21%, 13/38) and ST229 (39.47%, 15/38), which were first found in the present study. All isolates harbored virulence genes, and the incidence of the five virulence genes were ipaH (100%), ipaBCD (92.11%), stx (73.68%), ial (57.89%), and sen (28.95%). According to the results of antimicrobial susceptibilities, 76.32% (29/38) of S. dysenteriae isolates were resistant to fluoroquinolone and showed multidrug resistance. In a study on the polymorphism of QRDR of gyrA/B and parC/E genes, we identified two mutations in gyrA (Ser83→Leu and Asp87→Asn) and parC (Ser80→Ile and Ser83→Leu), respectively. Among them, 55.17% (16/29) of resistant strains had the gyrA point mutations (Ser83→Leu) and parC point mutation (Ser83→Leu). Moreover, 41.38% (12/29) of isolates had all five point mutations of gyrA and parC. In addition, the prevalence of the PMQR determinant genes was also investigated. All 29 fluoroquinolone-resistant isolates were positive for the aac(6’)-Ib-cr gene but negative for qepA, except SD001. In addition, only 6 (20.69%, 6/29) isolates harbored the qnr gene, including two with qnrB (6.90%, 2/29) and four with qnrS (13.79%, 4/29). Conclusion: Given the increased common emergence of multidrug resistant isolates, uninterrupted surveillance will be necessary to understand the actual epidemic burden and control this infection.


2014 ◽  
Vol 42 (1) ◽  
pp. 159-172
Author(s):  
A M Ammar ◽  
A M Attia ◽  
Marwa Abd El-Hamid ◽  
Nashwa M Helmy ◽  
Mona M El-Azzouny

Sign in / Sign up

Export Citation Format

Share Document