scholarly journals Characterization of auto-agglutinating and non-typeable uropathogenic Escherichia coli strains

2019 ◽  
Vol 13 (06) ◽  
pp. 465-472
Author(s):  
Ulises Hernández-Chiñas ◽  
Alejandro Pérez-Ramos ◽  
Laura Belmont-Monroy ◽  
María E Chávez-Berrocal ◽  
Edgar González-Villalobos ◽  
...  

Introduction: Uropathogenic Escherichia coli (UPEC) are the main etiological agent of urinary tract infections (UTIs). Association between different serotypes and UTIs is known, however, some strains are incapable to be serotyped. The aim of this work was to study bthe phenotypical and genotypical characteristics of 113 non-typeable (NT) and auto-agglutinating (AA) E. coli strains, isolated from UTIs in children and adults. Methodology: The 113 UPEC strains were analyzed by PCR assays using specific primers to determine their serogroups, fimH, papC, iutA, sat, hlyCA and cnf1, virulence associated genes, and chuA, yjaA and TSPE4.C2 for phylogroup determination. Additionally, the diffusion disk method was performed to evaluate the antimicrobial resistance to 18 antimicrobial agents. Results: Using the PCR assay, 63% (71) of the strains were genotyped showing O25 and O75 as the most common serogroups. The virulence genes fimH (86%) and iutA (74%) were the most prevalent, in relation to the phylogroups the commensal (A and B1) and virulent (B2 and D) showed similar frequencies (P > 0.05). The antimicrobial susceptibility test showed a high percentage (73%) of multidrug-resistant strains. Conclusions: The genotyping allowed identifying the serogroup in many of the strains that could not be typed by traditional serology. The strains carried virulence genes and were multidrug-resistant in both, commensal and virulent phylogroups. Our findings revealed that, in addition to the classical UPEC serogroups, there are pathogenic serogroups not reported yet.

Medicina ◽  
2019 ◽  
Vol 55 (11) ◽  
pp. 733 ◽  
Author(s):  
Ruta Prakapaite ◽  
Frederic Saab ◽  
Rita Planciuniene ◽  
Vidmantas Petraitis ◽  
Thomas J. Walsh ◽  
...  

Background and Objectives: Uropathogenic Escherichia coli (UPEC) are common pathogens causing urinary tract infections (UTIs). We aimed to investigate the relationship among clinical manifestation, serogroups, phylogenetic groups, and antimicrobial resistance among UPEC. Materials and Methods: One-hundred Escherichia coli isolates recovered from urine and ureteral scrapings were used for the study. The prevalence of antimicrobial resistance was determined by using European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations. E. coli serogroups associated with UTI, as well as phylogenetic diversity were analyzed using multiplex PCR reactions. Results: Eighty-seven strains (87%) were isolated from females, while 13 (13%) from males. A high frequency of resistance to cephalosporins (43%) and fluoroquinolones (31%) was observed. Among UTI-associated serogroups O15 (32.8%), O22 (23.4%), and O25 (15.6%) were dominant and demonstrated elevated resistance rates. The E. coli phylogenetic group B2 was most common. These observations extended to pregnant patients with asymptomatic bacteriuria. Conclusions: Due to high rates of resistance, strategies using empirical therapy of second-generation cephalosporins and fluoroquinolones should be reconsidered in this population.


2010 ◽  
Vol 59 (5) ◽  
pp. 592-598 ◽  
Author(s):  
Justine S. Gibson ◽  
Rowland N. Cobbold ◽  
Darren J. Trott

Multidrug-resistant (MDR) Escherichia coli causes extraintestinal infections in both humans and animals. This study aimed to determine whether MDR E. coli isolates cultured from extraintestinal infections in several animal species were clonal and crossed host-species boundaries, as suggested by initial characterization of a subset of canine and human isolates, or whether they represented a diverse group of host-specific strains. Isolates were obtained either from The University of Queensland Veterinary Diagnostic Laboratory or from an independent diagnostic laboratory between October 1999 and December 2007. Ninety-six MDR E. coli isolates cultured from extraintestinal clinical infections in 55 animals comprising dogs (n=45), cats (n=5), horses (n=4) and a koala (n=1) were analysed by phylogenetic grouping, antimicrobial susceptibility testing and PFGE. The isolates were cultured from the urinary tract (n=61), reproductive tract (n=11), wounds (n=11), surgical site infections (n=4) and other sites (n=9). Isolates from the same E. coli phylogenetic group with 100 % PFGE similarity and the same antimicrobial susceptibility pattern were considered to be repeat clones and excluded from further analysis. Three of the four E. coli phylogenetic groups (A, n=19; B1, n=8; and D, n=49) were represented. Analysis of PFGE similarity identified clusters of related phylogenetic group A isolates [clonal group (CG) 1] and group D isolates (CG2 and CG3), with the remainder of the isolates demonstrating diversity. The majority of CG2 isolates contained a plasmid-borne AmpC β-lactamase, imparting resistance to cefoxitin and third-generation cephalosporins, and were obtained between 2000 and 2003. CG3 isolates were sensitive to these antimicrobial agents and appeared to replace CG2 isolates as the dominant clones from 2003 to 2007. Apart from several canine and feline isolates that demonstrated clonality, PFGE profiles tended to be divergent across species. Whilst MDR E. coli isolates from extraintestinal infections in different animal species are diverse, some dominant CGs may persist over several years.


2021 ◽  
Vol 9 (4) ◽  
pp. 799
Author(s):  
Azza S. Zakaria ◽  
Eva A. Edward ◽  
Nelly M. Mohamed

The reintroduction of colistin, a last-resort antibiotic for multidrug-resistant pathogens, resulted in the global spread of plasmid-mediated mobile colistin resistance (mcr) genes. Our study investigated the occurrence of colistin resistance among Escherichia coli isolated from patients with urinary tract infections admitted to a teaching hospital in Egypt. Out of 67 isolates, three isolates were colistin-resistant, having a minimum inhibitory concentration of 4 µg/mL and possessing the mcr-1 gene. A double mechanism of colistin resistance was detected; production of mcr-1 along with amino acid substitution in PmrB (E123D and Y358N) and PmrA (G144S). Broth mating experiments inferred that mcr-1 was positioned on conjugative plasmids. Whole-genome sequencing of EC13049 indicated that the isolate belonged to O23:H4-ST641 lineage and to phylogroup D. The mcr-1-bearing plasmid corresponded to IncHI2 type with a notable similarity to other E. coli plasmids previously recovered from Egypt. The unbanned use of colistin in the Egyptian agriculture sector might have created a potential reservoir for the mcr-1 gene in food-producing animals that spread to humans. More proactive regulations must be implemented to prevent further dissemination of this resistance. This is the first characterization of mcr-1-carrying IncHI2:ST4 plasmid recovered from E. coli of a clinical source in Egypt.


2020 ◽  
Vol 5 (4) ◽  
pp. 176
Author(s):  
Purity Z. Kubone ◽  
Koleka P. Mlisana ◽  
Usha Govinden ◽  
Akebe Luther King Abia ◽  
Sabiha Y. Essack

We investigated the phenotypic and genotypic antibiotic resistance, and clonality of uropathogenic Escherichia coli (UPEC) implicated in community-acquired urinary tract infections (CA-UTIs) in KwaZulu-Natal, South Africa. Mid-stream urine samples (n = 143) were cultured on selective media. Isolates were identified using the API 20E kit and their susceptibility to 17 antibiotics tested using the disk diffusion method. Extended-spectrum β-lactamases (ESBLs) were detected using ROSCO kits. Polymerase chain reaction (PCR) was used to detect uropathogenic E. coli (targeting the papC gene), and β-lactam (blaTEM/blaSHV-like and blaCTX-M) and fluoroquinolone (qnrA, qnrB, qnrS, gyrA, parC, aac(6’)-Ib-cr, and qepA) resistance genes. Clonality was ascertained using ERIC-PCR. The prevalence of UTIs of Gram-negative etiology among adults 18–60 years of age in the uMgungundlovu District was 19.6%. Twenty-six E. coli isolates were obtained from 28 positive UTI samples. All E. coli isolates were papC-positive. The highest resistance was to ampicillin (76.9%) and the lowest (7.7%) to amoxicillin/clavulanic acid and gentamycin. Four isolates were multidrug-resistant and three were ESBL-positive, all being CTX-M-positive but SHV-negative. The aac(6’)-Ib-cr and gyrA were the most detected fluoroquinolone resistance genes (75%). Isolates were clonally distinct, suggesting the spread of genetically diverse UPEC clones within the three communities. This study highlights the spread of genetically diverse antibiotic-resistant CA-UTI aetiologic agents, including multidrug-resistant ones, and suggests a revision of current treatment options for CA-UTIs in rural and urban settings.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Michael Brilhante ◽  
Juliana Menezes ◽  
Adriana Belas ◽  
Claudia Feudi ◽  
Stefan Schwarz ◽  
...  

ABSTRACT Two multidrug-resistant and carbapenemase-producing Escherichia coli clones of sequence type 410 were isolated from fecal samples of a dog with skin infection on admission to an animal hospital in Portugal and 1 month after discharge. Whole-genome sequencing revealed a 126,409-bp Col156/IncFIA/IncFII multidrug resistance plasmid and a 51,479-bp IncX3 blaOXA-181-containing plasmid. The chromosome and plasmids carried virulence genes characteristic for uropathogenic E. coli, indicating that dogs may carry multidrug-resistant E. coli isolates related to those causing urinary tract infections in humans.


Author(s):  
Katarzyna Ćwiek ◽  
Anna Woźniak-Biel ◽  
Magdalena Karwańska ◽  
Magdalena Siedlecka ◽  
Christine Lammens ◽  
...  

Abstract Background A plasmid-mediated mechanism of bacterial resistance to polymyxin is a serious threat to public health worldwide. The present study aimed to determine the occurrence of plasmid-mediated colistin resistance genes and to conduct the molecular characterization of mcr-positive Escherichia coli strains isolated from Polish poultry. Methods In this study, 318 E. coli strains were characterized by the prevalence of mcr1–mcr5 genes, antimicrobial susceptibility testing by minimal inhibitory concentration method, the presence of antimicrobial resistance genes was screened by PCR, and the biofilm formation ability was tested using the crystal violet staining method. Genetic relatedness of mcr-1-positive E. coli strains was evaluated by multilocus sequence typing method. Results Among the 318 E. coli isolates, 17 (5.35%) harbored the mcr-1 gene. High antimicrobial resistance rates were observed for ampicillin (100%), tetracycline (88.24%), and chloramphenicol (82.35%). All mcr-1-positive E. coli strains were multidrug-resistant, and as many as 88.24% of the isolates contained the blaTEM gene, tetracycline (tetA and tetB), and sulfonamide (sul1, sul2, and sul3) resistance genes. Additionally, 41.18% of multidrug-resistant, mcr-1-positive E. coli isolates were moderate biofilm producers, while the rest of the strains showed weak biofilm production. Nine different sequence types were identified, and the dominant ST was ST93 (29.41%), followed by ST117 (17.65%), ST156 (11.76%), ST 8979 (11.76%), ST744 (5.88%), and ST10 (5.88%). Moreover, the new ST was identified in this study. Conclusions Our results showed a low occurrence of mcr-1-positive E. coli strains isolated from Polish poultry; however, all the isolated strains were resistant to multiple antimicrobial agents and were able to form biofilms at low or medium level.


2019 ◽  
Vol 82 (7) ◽  
pp. 1183-1190
Author(s):  
SE HYUN SON ◽  
KWANG WON SEO ◽  
YEONG BIN KIM ◽  
HYE YOUNG JEON ◽  
EUN BI NOH ◽  
...  

ABSTRACT Edible offal, which is the nonmuscular part of the livestock, is a popular food product in many countries. However, it can be easily contaminated by bacteria, such as Escherichia coli, during slaughter and processing and regarded as a reservoir for transfer of antimicrobial-resistant bacteria to humans. This study aimed to investigate prevalence and characteristics of antimicrobial-resistant E. coli isolates from edible offal in Korea. A total of 320 chicken offal samples, 540 pig offal samples, and 560 cattle offal samples were collected. Among the 118 E. coli isolates obtained, resistance to at least one antimicrobial agent was revealed in 32 (100%), 46 (95.8%), and 26 (68.4%) isolates of chicken, pig, and cattle offals, respectively, with an overall prevalence of 88.1% (104 of 118). The isolates from chicken offal showed highest resistance to most antimicrobial agents, with the exception of higher ampicillin resistance for isolates from pig offal. In the distribution of antimicrobial resistance genes of 69 (58.5%) multidrug-resistant (MDR) E. coli, blaTEM-1 (97.1%), tetA (76.6%), sul2 (70.6%), and cmlA (57.4%) were most prevalent. Class 1 and class 2 integrons were detected in 82.6 and 2.9% of the MDR isolates, respectively. In total, seven virulence genes (eaeA, escV, astA, fimH, papC, sfa/focDE, and iucC) were also identified in the MDR isolates. The fimH gene was the most frequent (91.3%). Overall, 52 isolates from chicken (24 isolates, 96.0%), pig (16 isolates, 55.2%) and cattle (12 isolates, 80.0%) offals among MDR isolates were found to have some plasmid replicons. Frep (38 isolates) and FIB (27 isolates) replicons were more prevalent than other replicon types. The results suggest that edible offal can become a relevant reservoir of E. coli strains carrying various antimicrobial resistance and virulence genes. HIGHLIGHTS


2020 ◽  
Author(s):  
Tulsi Nayaju ◽  
Milan Kumar Upreti ◽  
Alina Ghimire ◽  
Basudha Shrestha ◽  
Basanta Maharjan ◽  
...  

Abstract Background: The increased rate of urinary tract infection (UTI) in immunocompromised patients especially diabetic patients is a major public health problem in adults. Moreover, the infection with multidrug resistant strains producing extended spectrum beta-lactamase (ESBL) is a key obstacle in disease management among such vulnerable population. An immediate proper treatment depends on rapid diagnosis of UTI and screening of antimicrobial resistant pattern with highly sensitive methods which also reduces the possible urinary complications among the diabetic patients. Hence, this study was aimed to determine the occurrence of antibiotic resistant genes for β-lactamases; blTEM and blaCTX-M in uropathogenic Escherichia coli isolates from UTI suspected diabetic and non-diabetic patients. attendingMethods: A hospital-based cross-sectional study was conducted in Kathmandu Model Hospital in association with Central Department of Microbiology, TU from June to December 2018. A total of 1267 non-duplicate mid-stream urine specimens from diabetic and non-diabetic patients were obtained and processed immediately for isolation of uropathogens. The isolates were subjected for antibiotic susceptibility testing and ESBL confirmation. Finally, blaTEM and blaCTX-M ESBL genes were screened by using specific primers.Results: The overall prevalence of the urinary tract infection UTI was found to be 17.20%(218/1267) , out of which diabetic patients were significantly more infected with UTI accounting for 32.29%(31/96) as compared to non-diabetic persons, 15.97%(187/1171). A total of 221 bacterial were from 218 culture positive specimens in which E . coli was a most predominate one; 67.9%(150/221.). Forty-four percent (66/150) of the total E. coli was MDR and 37.33%(56/150) were ESBL producers. Among 56 isolates, 92.3%(12/13) from diabetic patents and 83.0% (44/53) were from non-diabetic patients. Furthermore, 84.85% of the screened ESBL producers were confirmed to possess either single or both of the blaTEM and blaCTX-M genes . The blaTEM and blaCTX-M genes were detected in 53.57% and 87.5% of the phenotypically ESBL confirmed E. coli .Conclusions: The UTI infection is an increasing problem in diabetic patients and infection with multidrug resistant strains specially ESBL producing uropathogens are causing a huge problem in disease management leading to high rate of mortality and morbidity of diabetic patients.


2019 ◽  
Author(s):  
Belayneh Regasa Dadi ◽  
Tamrat Abebe ◽  
Lixin Zhang ◽  
Adane Mihret ◽  
Workeabeba Abebe ◽  
...  

Abstract Background Urinary tract infection (UTI) is a common cause of morbidity and mortality worldwide. Uropathogenic Escherichia coli (UPEC) bacteria are the major cause of urinary tract infections. UPEC strains derive from different phylogenetic groups and possess an arsenal of virulence factors that contribute to their ability to overcome different defense mechanisms and cause disease. The objective of this study was to identify phylogroup and virulence genes of UPEC among urinary tract infection patients. Methods A total of 200 E. coli bacteria were isolated from 780 UTI patients using culture and conventional biochemical tests. Identification of phylogroup and genes that encodes for virulence factors was done using multiplex polymerase chain reaction (PCR). Data was processed and analyzed with SPSS version16.0 and Epi-info version 3.4.1 software. Result The most common urologic clinical manifestation combinations in this study were dysuria, urine urgency and urgency incontinence. The frequent UPEC virulence gene identified was fim H 164 (82%), followed by aer 109 (54.5%), hly 103 (51.5%), pap 59 (29.5%), cnf 58 (29%), sfa 50 (25%) and afa 24 (12%).There was significant association between pap gene and urine urgency (p-0.016); sfa and dysuria and urine urgency (p-0.019 and p-0.043 respectively); hly and suprapubic pain (p-0.002); aer and suprapubic pain, flank pain and fever (p-0.017, p-0.040, p-0.029 respectively). Majority of E. coli isolates were phylogroup B2 60(30%) followed by D 55(27.5%), B1 48(24%) and A 37(18.5%). There was significant association between E. coli phylogroup B2 and three virulence genes namely afa, pap, and sfa (p-0.014, p-0.002, p-0.004 respectively). Conclusion In this study the most frequent E. coli virulence gene was fim H, followed by aer, hly, pap, cnf, sfa and afa respectively. There was significant association between E. coli virulence genes and clinical symptoms of UTI. The phylogenetic analysis indicates majority of uropathogenic E. coli isolates were phylogroup B2 followed by phylogroup D. Phylogroup B2 carries more virulence genes. Hence, targeting major UPEC phylogroup and virulence genes for potential vaccine candidates is essential for better management of UTI and further research has to be conducted in this area.


2019 ◽  
Vol 19 (3) ◽  
pp. 322-326 ◽  
Author(s):  
Hassan Valadbeigi ◽  
Elham Esmaeeli ◽  
Sobhan Ghafourian ◽  
Abbas Maleki ◽  
Nourkhoda Sadeghifard

Introduction: The aim of the current study was to investigate the prevalence of virulence genes in uropathogenic Escherichia coli (UPEC) isolates in Ilam. Materials and Methods: For this purpose, a total of 80 UPEC isolates were collected for patients with UTIs during a 6 months period. The multiplex polymerase chain reaction (multiplex PCR) was used to detect the papEF, fimH, iucD, hlyA, fyuA, and ompT genes. Results: The prevalence of fimH, papEF, iucD, fyuA, hlyA, hlyA, and ompT genes were 87.5%, 47.5%, 60%, 67.5%, 27.5%, 47.5% and 71.2%, respectively. Among all of the isolates, 27 profiles were obtained. Conclusion: Our findings demonstrated that the most prevalence was found for fimH, and different distribution of virulence genes suggested different ability of pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document