scholarly journals Genetic variability and association studies in pearl millet for green fodder yield and quality traits

2018 ◽  
Vol 9 (3) ◽  
pp. 1263
Author(s):  
Anusha Mariam Thomas ◽  
C. Babu ◽  
K. Iyanar
HortScience ◽  
2016 ◽  
Vol 51 (9) ◽  
pp. 1079-1086 ◽  
Author(s):  
Rolland Agaba ◽  
Phinehas Tukamuhabwa ◽  
Patrick Rubaihayo ◽  
Silver Tumwegamire ◽  
Andrew Ssenyonjo ◽  
...  

The amount of genotypic and phenotypic variability that exists in a species is important for selection and initiating breeding programs. Yam bean is grown locally in tropical countries of the Americas and Asia for their tasty storage roots, which usually have low dry matter content. The crop was recently introduced in Uganda and other East and Central African countries to supplement iron (Fe) and protein content in diets. This study aimed to estimate genetic variability for root yield and quality traits among 26 yam bean accessions in Uganda. A randomized complete block design was used with two replications across two ecogeographical locations and two seasons during 2012 and 2013. Near-infrared reflectance spectroscopy (NIRS) was used to determine quality of storage root samples. Significant differences among genotypes were observed for all traits except root protein, zinc (Zn), and phosphorus contents. Genotypic variance components () were significant for storage root fresh yield (SRFY), storage root dry matter (SRDM), storage root dry yield (SRDY), vine yield (VNY), fresh biomass yield (FBY), and storage root starch (STA) and Fe contents. For traits with significant the broad sense heritability estimates ranged from 58.4% for SRDY to 83.6% for FBY; and phenotypic coefficients of variation were high for SRFY (66%), SRDY (53.3%), VNY (60.5%), and FBY (59%), but low to medium for SRDM (22.6%), STA (15.1%), and Fe (21.3%). Similarly, the genotypic coefficients of variation were high for SRFY (56.7%), SRDY (53.3%), VNY (55%), and FBY (53.9%); and low for SRDM (20%), STA (12.4%), and Fe (17.8%). There were strong positive correlations between SRFY and both SRDY (r = 0.926) and FBY (r = 0.962), but low-to-moderate correlations among quality traits. It should be possible to breed for high dry matter yam beans by using low dry matter accessions due to the observed genetic variation ( = 9.3%2), which is important if the high dry matter Pachyrhizus tuberosus accessions (known as chuin) from Peru cannot be accessed. This study indicated substantial genetic variation for yield and quality traits in yam bean, demonstrating potential for adaptability to growing conditions and consumer needs in East and Central Africa and for genetic improvement through selection.


2002 ◽  
Vol 1 (4) ◽  
pp. 326-327 ◽  
Author(s):  
Muhammad Naeem ◽  
Muhammad Shahid Muni . ◽  
Ahmad Hasan Khan . ◽  
Sultan Salahuddin .

Author(s):  
Zahida Rashid ◽  
Tanveer Ahmad Ahngar ◽  
B. Sabiya ◽  
N. Sabina ◽  
N. S. Khuroo ◽  
...  

A field experiment was conducted at Dry land Agricultural Research Station, Rangreth, Srinagar, SKUAST-K in Kharif 2020 to study the effect of Plant Growth Regulators and micronutrients on growth, yield and quality of sorghum. The objective of the study was to assess the effect of Plant Growth Regulators and micronutrients on herbage yield and quality. The treatments included; T1: Tricontanol 10 ppm at 30 DAS (foliar spray), T2: Salicylic acid 100 ppm at 30 DAS (foliar spray), T3: 5 kg Zn/ha soil application, T4: 2 kg B/ha soil application, T5: 5 kg Zn + 2 kg B/ha soil application, T6: 5 kg Zn/ha (soil application ) + Triacontanol 10 ppm at 30 DAS (foliar spray), T7: 5 kg Zn/ha (soil application) + salicylic acid 100 ppm at 30 DAS (foliar spray), T8: 2 kg B/ha (soil application) + Triacontanol 10 ppm at 30 DAS (foliar spray), T9: 2 kg B/ha (soil application )+ salicylic acid 100 ppm at 30 DAS (foliar spray), T10: 5 kg Zn + 2 kg B/ha (soil application) + Triacontanol 10 ppm at 30 DAS (foliar spray), T11: 5 kg Zn + 2 kg B/ha (soil application) + salicylic acid 100 ppm at 30 DAS (foliar spray) and T12: Water spray at the time of PGR application. Zn and B were applied at the time of sowing in the soil. The crop was raised with recommended package of practices. In treatments, where zinc was not a treatment, an amount of sulphur through gypsum equivalent to sulphate supplied with 5 kg ZnSO4 was applied to compensate. The crop was sown in 30.0 cm apart lines. The trial was laid out in Randomized Block Design with three replications. The results indicated that all the treatments improved the green fodder yield over control. Among different treatments, T10: 5 kg Zn + 2 kg B/ha soil application + Triacontanol 10 ppm at 30 DAS foliar spray and T11: 5 kg Zn + 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray produced maximum GFY (493.6 and 490.5q/ha) on locational mean basis. It was significantly superior to other treatments. These treatments improved the green fodder yields by 35.0 % and 34.2 %, respectively, over control (spray of water). In terms of dry matter, similar trend was noted and the improvement with T10 and T11 was to the tune of 36.8 % and 41.0 % over control. Tricontanol 10 ppm at 30 DAS (foliar spray) (T1) improved the green fodder yield and dry fodder yield by 13.6% and 14.3 % respectively over T12Water spray at the time of Plant Growth Regulator application. Similarly spray of T2: Salicylic acid 100 ppm at 30 DAS (foliar spray) improved the green fodder yield and dry fodder yield by 14.4% and 15.4% respectively over T12Water spray at the time of Plant Growth Regulator application. Similar trend was observed with respect to quality parameters (crude protein content and crude protein yield) of sorghum.


Sign in / Sign up

Export Citation Format

Share Document