scholarly journals Analysis of Insulation Materials of Cable Systems by Method of Partial Discharges

2015 ◽  
Vol 4 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Marina N. Dubyago ◽  
Nikolay K. Poluyanovich
2015 ◽  
Vol 752-753 ◽  
pp. 1153-1157 ◽  
Author(s):  
Marina N. Dubyago ◽  
Irina A. Poluyanovich ◽  
Nikolay K. Poluyanovich

Problematic issues insulation of power cable systems (PCS) based on the design and development of non-destructive methods are considered in the paper. The basic components of the PCS, destroying the insulation, are determined. The analytical method for assessing the oxidation processes of cellulose with the definition of the most probable is proposed. The approach for identifying the main processes of destruction of the insulation allows more detail to present background to the development of partial discharges (PD) in insulation and to identify measures for minimizing processes that lead to the destruction of the insulation PCS.


Author(s):  
Charles Su

Transformers are subjected to voltages and currents of various waveforms while in service or during insulation tests. They could be system voltages, ferroresonance, and harmonics at low frequencies, lightning or switching impulses at high frequencies, and corona/partial discharges at ultra-high frequencies (a brief explanation is given at the end of the chapter). It is of great importance to understand the frequency characteristics of transformer windings, so that technical problems such as impulse distribution, resonance, and partial discharge attenuation can be more readily solved. The frequency characteristics of a transformer winding depend on its layout, core structure, and insulation materials.


On-site PD measurements on high voltage cables have to concentrate on the cable accessories because there is a remaining risk for assembling faults on site. PD sensors with an appropriate coupling behavior to accessory-internal PD give sensitivities of a few pC or even better. Unfortunately, two main reasons prevent the general use of PD sensors in cable accessories. First of all, the costs for PD sensors have to be balanced with the costs of the accessories, importance of the cable link, consequential costs for outage etc. This is the reason why PD sensors were mainly used EHV cable systems. The second reason is limited accessibility: the PD sensor cable at the accessory has to be connected to a PD detection unit. Accessibility is much more difficult for direct buried cable systems than for cable terminations and tunnel-laid cable systems: the senor cable must pass the ground and the end up in a box on the surface to provide access. This solution causes additional costs and new problems like sealing the sensor cable against humidity, capability to withstand sheath testing etc. By looking for alternative access to PD signals from cable joints of long cable systems, a very simple solution proved suitable: detecting PD at cross-bonding links. To investigate the high frequency propagation of PD pulses in cross-bonding links, computer simulations and laboratory measurements were done.


Author(s):  
Leonard S. Fifield ◽  
Robert Duckworth ◽  
Samuel W. Glass

Nuclear power plants contain hundreds of kilometers of electrical cables including cables used for power, for instrumentation, and for control. It is essential that safety-related cable systems continue to perform following a design-basis event. Wholesale replacement of electrical cables in existing plants facing licensing period renewal may be both impractical and cost-prohibitive. It is therefore important to understand the long term aging of cable materials to have confidence that aged cables will perform when needed. It is equally important in support of cable aging management to develop methods to evaluate the health of installed cables and inform selective cable replacement decisions. The most common insulation materials for electrical cables in nuclear power plants are cross-linked polyethylene and ethylene-propylene rubber. The mechanical properties of these materials degrade over time in the presence of environmental stresses including heat, gamma irradiation, and moisture. Mechanical degradation of cable insulation beyond a certain threshold is unacceptable because it can lead to insulation cracking, exposure of energized conductors, arcing and burning or loss of the ability of the cable system to function during a design-basis accident. While thermal-, radiation-, and moisture-related degradation of polymer insulation materials has been extensively studied over the last few decades, questions remain regarding the long term performance of cable materials in nuclear plant-specific environments. Identified knowledge gaps include an understanding of the temperature-dependence of activation energies for thermal damage and an understanding of the synergistic effects of radiation and thermal stress on polymer degradation. Many of the outstanding questions in the aging behavior of cable materials relate to the necessity of predicting long-term field degradation using accelerated aging results from the laboratory. Materials degrade faster under more extreme conditions, but extension of behavior to long term degradation under more mild conditions, such as those experienced by most installed cables in nuclear power plants, is complicated by the fact that different degradation mechanisms may be involved in extreme and mild scenarios. The discrepancy in predicted results from short term, more extreme exposure and actual results from longer term, more mild exposures can be counter intuitive. For instance, due to the attenuation of oxidation penetration in material samples rapidly aged through exposure to high temperatures, the bulk of the samples may be artificially protected from thermal aging. In another example, simultaneous exposure of cable insulation material to heat and radiation may actually lead to less damage at higher temperatures than may be observed at lower temperatures. The Light Water Reactor Sustainability program of the United States (US) Department of Energy (DOE) Office of Nuclear Energy is funding research to increase the predictive understanding of electrical cable material aging and degradation in existing nuclear power plants in support of continued safe operation of plants beyond their initial license periods. This research includes the evaluation and development of methods to assess installed cable condition.


Sign in / Sign up

Export Citation Format

Share Document