scholarly journals Parametric and semi-parametric bootstrap-based confidence intervals for robust linear mixed models

Methodology ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 271-295
Author(s):  
Fabio Mason ◽  
Eva Cantoni ◽  
Paolo Ghisletta

The linear mixed model (LMM) is a popular statistical model for the analysis of longitudinal data. However, the robust estimation of and inferential conclusions for the LMM in the presence of outliers (i.e., observations with very low probability of occurrence under Normality) is not part of mainstream longitudinal data analysis. In this work, we compared the coverage rates of confidence intervals (CIs) based on two bootstrap methods, applied to three robust estimation methods. We carried out a simulation experiment to compare CIs under three different conditions: data 1) without contamination, 2) contaminated by within-, or 3) between-participant outliers. Results showed that the semi-parametric bootstrap associated to the composite tau-estimator leads to valid inferential decisions with both uncontaminated and contaminated data. This being the most comprehensive study of CIs applied to robust estimators of the LMM, we provide fully commented R code for all methods applied to a popular example.

2015 ◽  
Vol 26 (3) ◽  
pp. 1373-1388 ◽  
Author(s):  
Wei Liu ◽  
Norberto Pantoja-Galicia ◽  
Bo Zhang ◽  
Richard M Kotz ◽  
Gene Pennello ◽  
...  

Diagnostic tests are often compared in multi-reader multi-case (MRMC) studies in which a number of cases (subjects with or without the disease in question) are examined by several readers using all tests to be compared. One of the commonly used methods for analyzing MRMC data is the Obuchowski–Rockette (OR) method, which assumes that the true area under the receiver operating characteristic curve (AUC) for each combination of reader and test follows a linear mixed model with fixed effects for test and random effects for reader and the reader–test interaction. This article proposes generalized linear mixed models which generalize the OR model by incorporating a range-appropriate link function that constrains the true AUCs to the unit interval. The proposed models can be estimated by maximizing a pseudo-likelihood based on the approximate normality of AUC estimates. A Monte Carlo expectation-maximization algorithm can be used to maximize the pseudo-likelihood, and a non-parametric bootstrap procedure can be used for inference. The proposed method is evaluated in a simulation study and applied to an MRMC study of breast cancer detection.


2019 ◽  
Vol 35 (23) ◽  
pp. 4879-4885 ◽  
Author(s):  
Chao Ning ◽  
Dan Wang ◽  
Lei Zhou ◽  
Julong Wei ◽  
Yuanxin Liu ◽  
...  

Abstract Motivation Current dynamic phenotyping system introduces time as an extra dimension to genome-wide association studies (GWAS), which helps to explore the mechanism of dynamical genetic control for complex longitudinal traits. However, existing methods for longitudinal GWAS either ignore the covariance among observations of different time points or encounter computational efficiency issues. Results We herein developed efficient genome-wide multivariate association algorithms for longitudinal data. In contrast to existing univariate linear mixed model analyses, the proposed method has improved statistic power for association detection and computational speed. In addition, the new method can analyze unbalanced longitudinal data with thousands of individuals and more than ten thousand records within a few hours. The corresponding time for balanced longitudinal data is just a few minutes. Availability and implementation A software package to implement the efficient algorithm named GMA (https://github.com/chaoning/GMA) is available freely for interested users in relevant fields. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Miriam Sieg ◽  
Lina Katrin Sciesielski ◽  
Karin Kirschner ◽  
Jochen Kruppa

Abstract Background: In longitudinal studies, observations are made over time. Hence, the single observations at each time point are dependent, making them a repeated measurement. In this work, we explore a different, counterintuitive setting: At each developmental time point, a lethal observation is performed on the pregnant or nursing mother. Therefore, the single time points are independent. Furthermore, the observation in the offspring at each time point is correlated with each other because each litter consists of several (genetically linked) littermates. In addition, the observed time series is short from a statistical perspective as animal ethics prevent killing more mother mice than absolutely necessary, and murine development is short anyway. We solve these challenges by using multiple contrast tests and visualizing the change point by the use of confidence intervals.Results: We used linear mixed models to model the variability of the mother. The estimates from the linear mixed model are then used in multiple contrast tests.There are a variety of contrasts and intuitively, we would use the Changepoint method. However, it does not deliver satisfying results. Interestingly, we found two other contrasts, both capable of answering different research questions in change point detection: i) Should a single point with change direction be found, or ii) Should the overall progression be determined? The Sequen contrast answers the first, the McDermott the second. Confidence intervals deliver effect estimates for the strength of the potential change point. Therefore, the scientist can define a biologically relevant limit of change depending on the research question.Conclusion: We present a solution with effect estimates for short independent time series with observations nested at a given time point. Multiple contrast tests produce confidence intervals, which allow determining the position of change points or to visualize the expression course over time. We suggest to use McDermott’s method to determine if there is an overall significant change within the time frame, while Sequen is better in determining specific change points. In addition, we offer a short formula for the estimation of the maximal length of the time series.


Sign in / Sign up

Export Citation Format

Share Document