scholarly journals Blood Cell-Derived Induced Pluripotent Stem Cells Free of Reprogramming Factors Generated by Sendai Viral Vectors

2013 ◽  
Vol 2 (8) ◽  
pp. 558-566 ◽  
Author(s):  
Lin Ye ◽  
Marcus O. Muench ◽  
Noemi Fusaki ◽  
Ashley I. Beyer ◽  
Jiaming Wang ◽  
...  
Author(s):  
Kee-Pyo Kim ◽  
Dong Wook Han ◽  
Johnny Kim ◽  
Hans R. Schöler

AbstractEctopic expression of Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Attempts to identify genes or chemicals that can functionally replace each of these four reprogramming factors have revealed that exogenous Oct4 is not necessary for reprogramming under certain conditions or in the presence of alternative factors that can regulate endogenous Oct4 expression. For example, polycistronic expression of Sox2, Klf4 and c-Myc can elicit reprogramming by activating endogenous Oct4 expression indirectly. Experiments in which the reprogramming competence of all other Oct family members tested and also in different species have led to the decisive conclusion that Oct proteins display different reprogramming competences and species-dependent reprogramming activity despite their profound sequence conservation. We discuss the roles of the structural components of Oct proteins in reprogramming and how donor cell epigenomes endow Oct proteins with different reprogramming competences.


2013 ◽  
Vol 41 (8) ◽  
pp. S27
Author(s):  
Isabel Dorn ◽  
Katharina Klich ◽  
Martina Radstaak ◽  
Katherina Psathaki ◽  
Marcos Arauzo-Bravo ◽  
...  

2012 ◽  
Vol 90 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Saeideh Nakhaei-Rad ◽  
Ahmad R. Bahrami ◽  
Mahdi Mirahmadi ◽  
Maryam M. Matin

Induced pluripotent stem cells are generated by direct reprogramming of somatic cells with the introduction of defined transcription factors or other means. Clinical applications of induced pluripotent stem cells are the latest of stem cell therapy approaches due to overcoming problems associated with insufficient cells from conventional sources and immune rejections. In practice, this is restricted by 4 major barriers including the use of genetic manipulations for delivering the reprogramming factors, low efficiency of this process, slow kinetics of the direct reprogramming, and potential for tumor development. Here, we review the latest achievements in improving reprogramming efficiency by alternative strategies. These alternatives mainly involve the replacement of genetic reprogramming factors with small molecules or other factors.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ryan O'Doherty ◽  
Udo Greiser ◽  
Wenxin Wang

The concept of inducing pluripotency to adult somatic cells by introducing reprogramming factors to them is one that has recently emerged, gained widespread acclaim and garnered much attention among the scientific community. The idea that cells can be reprogrammed, and are not unidirectionally defined opens many avenues for study. With their clear potential for use in the clinic, these reprogrammed cells stand to have a huge impact in regenerative medicine. This realization did not occur overnight but is, however, the product of many decades worth of advancements in researching this area. It was a combination of such research that led to the development of induced pluripotent stem cells as we know it today. This review delivers a brief insight in to the roots of iPS research and focuses on succinctly describing current nonviral methods of inducing pluripotency using plasmid vectors, small molecules and chemicals, and RNAs.


2013 ◽  
Vol 25 (1) ◽  
pp. 290 ◽  
Author(s):  
H. S. Kwon ◽  
H. J. Oh ◽  
D. H. Lee ◽  
D. E. Kim ◽  
S. K. Kang ◽  
...  

Induced pluripotent stem cells (iPSC) derived from a patient’s fibroblasts have been used as fine resources for studying disease mechanisms and therapeutic strategies. The dog is considered invaluable in human disease research because its genetic diseases are strikingly similar to those of human. Therefore, we generated cloned dogs and transgenic cloned dogs via somatic cell nuclear transfer. In this study, we tried to derive canine iPSCs from canine fibroblasts to establish a way to make iPSC from skin fibroblasts of transgenic cloned dogs. We isolated canine fetal fibroblast (FF) from normal beagles and adult skin fibroblast (ASF) from cloned beagles. Both ASF and FF were infected with all-in-one retroviral vector that delivers human reprogramming factors (Oct4, Sox2, Klf4, c-Myc). Ten to twenty-one days after infection, the colony-shaped structure was picked and plated on a mouse embryonic fibroblast (MEF) feeder layer, pretreated with mitomycin C. Then, all cells were cultured with DMEM/F12 supplemented with 20% fetal bovine serum, 5 ng mL–1 basic fibroblast growth factor (bFGF), 5 ng mL–1 LIF, 0.1 mM β-mercaptoethanol, 1% NEAA, and 1% penicillin-streptomycin. Alkaline phosphatase (AP) activity and expression of Oct4, Sox2, SSEA1, and SSEA4, were observed in the cells to characterise the iPS cell colonies. In vitro differentiation of 10th-passage canine iPSC was performed through embryonic body formation. About 50 canine iPS-like colonies were formed on a 100-mm dish. As a result, the canine iPSC from FF (iPSC-FF) and canine iPSC from ASF (iPSC-ASF) showed typical colony morphology, and both stained positively for AP. The expression of pluripotency-associated transcription factors Oct4 and Sox2 was positively displayed in iPSC-FF colonies. The stem cell markers SSEA1 and SSEA4 were negative in canine iPSC-FF. The canine iPS-FF spontaneously differentiated into all 3 germ layers in vitro, showing positive expressions of βIII-tubulin (ectoderm), α-SMA (mesoderm), and GATA6 (endoderm). As for iPS-ASF, characterisation and in vitro differentiation experiment are in progress. These results show that canine iPS-FF are similar to embryonic stem cells in terms of morphology and the ability to differentiate into 3 germ layers. Although we did not demonstrate complete verification of canine iPS-ASF of the cloned dog, their morphology, AP expression, and iPS-FF generation should indicate the possibility of iPSC production in the cloned dog. In conclusion, retroviral transduction of 4 human reprogramming factors can reprogram canine fetal fibroblasts into canine iPSC. The technique of producing canine iPSC will stimulate the utilisation of transgenic cloned dogs and expand the range of human diseases or therapeutic application. This study was supported by RDA (#PJ0089752012), RNL Bio (#550-20120006), IPET (#311011-05-1-SB010), Research Institute for Veterinary Science, and Nestlé Purina Korea.


Sign in / Sign up

Export Citation Format

Share Document