scholarly journals Combustion of Floating Oil Slick in Small Open Tank

2000 ◽  
Vol 35 (5) ◽  
pp. 332-336
Author(s):  
Hajime Yoshida ◽  
Nobukazu Shimada ◽  
Soon-ik Kwon ◽  
Sadanao Rikiyasu
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vaishali Chaudhary ◽  
Shashi Kumar

AbstractOil spills are a potential hazard, causing the deaths of millions of aquatic animals and this leaves a calamitous effect on the marine ecosystem. This research focuses on evaluating the potential of polarimetric parameters in discriminating the oil slick from water and also possible thicker/thinner zones within the slick. For this purpose, L-band UAVSAR quad-pol data of the Gulf of Mexico region is exploited. A total number of 19 polarimetric parameters are examined to study their behavior and ability in distinguishing oil slick from water and its own less or more oil accumulated zones. The simulation of compact-pol data from UAVSAR quad-pol data is carried out which has shown good performance in detection and discrimination of oil slick from water. To know the extent of separation between oil and water classes, a statistical separability analysis is carried out. The outcomes of each polarimetric parameter from separability analysis are then quantified with the radial basis function (RBF) supervised Support Vector Machine classifier followed with an accurate estimation of the results. Moreover, a comparison of the achieved and estimated accuracy has shown a significant drop in accuracy values. It has been observed that the highest accuracy is given by LHV compact-pol decomposition and coherency matrix with a classification accuracy of ~ 94.09% and ~ 94.60%, respectively. The proposed methodology has performed well in discriminating the oil slick by utilizing UAVSAR dataset for both quad-pol and compact-pol simulation.


2021 ◽  
Vol 13 (9) ◽  
pp. 1607
Author(s):  
Guannan Li ◽  
Ying Li ◽  
Yongchao Hou ◽  
Xiang Wang ◽  
Lin Wang

Marine oil spill detection is vital for strengthening the emergency commands of oil spill accidents and repairing the marine environment after a disaster. Polarimetric Synthetic Aperture Radar (Pol-SAR) can obtain abundant information of the targets by measuring their complex scattering matrices, which is conducive to analyze and interpret the scattering mechanism of oil slicks, look-alikes, and seawater and realize the extraction and detection of oil slicks. The polarimetric features of quad-pol SAR have now been extended to oil spill detection. Inspired by this advancement, we proposed a set of improved polarimetric feature combination based on polarimetric scattering entropy H and the improved anisotropy A12–H_A12. The objective of this study was to improve the distinguishability between oil slicks, look-alikes, and background seawater. First, the oil spill detection capability of the H_A12 combination was observed to be superior than that obtained using the traditional H_A combination; therefore, it can be adopted as an alternate oil spill detection strategy to the latter. Second, H(1 − A12) combination can enhance the scattering randomness of the oil spill target, which outperformed the remaining types of polarimetric feature parameters in different oil spill scenarios, including in respect to the relative thickness information of oil slicks, oil slicks and look-alikes, and different types of oil slicks. The evaluations and comparisons showed that the proposed polarimetric features can indicate the oil slick information and effectively suppress the sea clutter and look-alike information.


2015 ◽  
Vol 36 (12) ◽  
pp. 3243-3273 ◽  
Author(s):  
M. Migliaccio ◽  
F. Nunziata ◽  
A. Buono
Keyword(s):  

2021 ◽  
Author(s):  
Emna Amri ◽  
Hermann Courteille ◽  
Alexandre Benoit ◽  
Philippe Bolon ◽  
Dominique Dubucq ◽  
...  

Author(s):  
Виктор Геннадьевич Аковецкий ◽  
Алексей Викторович Афанасьев ◽  
Анжела Асхатовна Ильченко

Оценка геоэкологических рисков на объектах нефтегазового комплекса непосредственно связана с обеспечением безопасности территорий, на которых они расположены. Особенно тяжелые последствия воздействия на экологическое состояние территорий оказывают аварийные разливы нефти и нефтепродуктов. Решение данного класса задач требует оценки уровня аварийного разлива и его классификации с позиций возникновения чрезвычайной ситуации. В статье рассмотрена возможность замены традиционных визуальных методов оценки разливов на разработанные автоматизированные и автоматические способы, использующие для решения задач классификации материалов аэрокосмических съемок. Приведены результаты автоматической классификации изображений мониторинговых наблюдений, которые имели место при аварийном разливе дизельного топлива в г. Норильске, аварии танкера на морской акватории о. Маврикий и аварии сухопутного нефтепровода. Полученные результаты показали работоспособность разработанных методов и возможность их использования в задачах инвентаризации и паспортизации аварийных разливов нефти на суше и акваториях. Purpose. The aim of this work is to ensure the environmental safety of the territories where the accidental spills of oil and oil products have occurred. They have a significant negative impact on the environment of land and water areas. To minimize their impact and eliminate the consequences, an “emergency” regime is introduced in Russia. Depending on the level of the oil spill, it may cover both the territory of a separate facility and a region, and the entire state as a whole. Methods. Traditionally, an estimate of the level of a spill is determined based on the mass of the spilled oil through visual observations from aircraft or ground measurements at selected points. This approach does not allow an accurate assessment of the total area of pollution, the nature of pollution inside the oil slick, as well as the dynamics of its spread over time. To eliminate these limitations, it is proposed to use systems of aerospace monitoring observations and automatic measurements of oil slick parameters: area, composition and mass. To solve this problem, the method of “comparison with the reference standard” was used. Here, samples of color gradations of oil and oil product spill spots proposed in the Bonn Agreement of 2004 were prepared as reference standards. Results. The method was implemented using the experimental software complex AGIR-TM (Aerospace, Geoinformatics, Research, Risks-Technological Modules) which was developed at the Department of Geoecology of the Gubkin Russian State University of Oil and Gas (NRU). During the experimental testing of this method, the work was carried out to assess the accidental spill in the following cases diesel fuel in Norilsk (2020), oil on a tanker in the water area of Mauritius (2020) and oil in an oil pipeline (2012, 2017). The method provides the localization of the area spills along with the color correction (normalization), classification of the composition of oil and oil products and the through account of the investigated processes. The work results in determination for the area of the oil and oil products spill, its composition and weight. Conclusions. The article shows the relevance of solving problems related to the problem of liquidation of emergency spills of oil and oil products at the facilities of the oil and gas complex. The main approaches to aerospace monitoring observations and automatic interpretation of spill parameters are considered. The proposed approach is based on the use of “digital twins” that implement the transition from manual (visual) to automated and automatic modes for determining the parameters of an oil spill: area, composition and mass. The results presented in the article showed the efficiency of the proposed method and the possibility of its use in the tasks of assessing geoecological risks associated with accidental spills of oil and oil products on land and in water areas.


2021 ◽  
Vol 119 ◽  
pp. 103915
Author(s):  
Li-Feng Wang ◽  
Li-Ping Xin ◽  
Bo Yu ◽  
Lian Ju ◽  
Lai Wei

Sign in / Sign up

Export Citation Format

Share Document