Risk Stratification and Emerging Treatment Strategies in Acute Myeloid Leukemia

2013 ◽  
Vol 11 (5S) ◽  
pp. 667-669 ◽  
Author(s):  
Margaret R. O’Donnell
2020 ◽  
Vol 20 (3) ◽  
pp. 147-155 ◽  
Author(s):  
Prajwal Dhakal ◽  
Bimatshu Pyakuryal ◽  
Prasun Pudasainee ◽  
Venkat Rajasurya ◽  
Krishna Gundabolu ◽  
...  

2017 ◽  
Vol 35 (9) ◽  
pp. 934-946 ◽  
Author(s):  
Lars Bullinger ◽  
Konstanze Döhner ◽  
Hartmut Döhner

In recent years, our understanding of the molecular pathogenesis of myeloid neoplasms, including acute myeloid leukemia (AML), has been greatly advanced by genomics discovery studies that use novel high-throughput sequencing techniques. AML, similar to most other cancers, is characterized by multiple somatically acquired mutations that affect genes of different functional categories, a complex clonal architecture, and disease evolution over time. Patterns of mutations seem to follow specific and temporally ordered trajectories. Mutations in genes encoding epigenetic modifiers, such as DNMT3A, ASXL1, TET2, IDH1, and IDH2, are commonly acquired early and are present in the founding clone. The same genes are frequently found to be mutated in elderly individuals along with clonal expansion of hematopoiesis that confers an increased risk for the development of hematologic cancers. Furthermore, such mutations may persist after therapy, lead to clonal expansion during hematologic remission, and eventually lead to relapsed disease. In contrast, mutations involving NPM1 or signaling molecules (eg, FLT3, RAS) typically are secondary events that occur later during leukemogenesis. Genetic data are now being used to inform disease classification, risk stratification, and clinical care of patients. Two new provisional entities, AML with mutated RUNX1 and AML with BCR- ABL1, have been included in the current update of the WHO classification of myeloid neoplasms and AML, and mutations in three genes— RUNX1, ASXL1, and TP53—have been added in the risk stratification of the 2017 European LeukemiaNet recommendations for AML. Integrated evaluation of baseline genetics and assessment of minimal residual disease are expected to further improve risk stratification and selection of postremission therapy. Finally, the identification of disease alleles will guide the development and use of novel molecularly targeted therapies.


2018 ◽  
Vol 141 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Li Wang ◽  
Jun Xu ◽  
Xiaolong Tian ◽  
Tingting Lv ◽  
Guolin Yuan

Background/Aims: The aim of this work was to investigate the efficacy and predictive factors of CLAG treatment in refractory or relapsed (R/R) acute myeloid leukemia (AML) patients. Methods: Sixty-seven R/R AML patients were enrolled in this prospective cohort study and treated by a CLAG regimen: 5 mg/m2/day cladribine (days 1–5), 2 g/m2/day cytarabine (days 1–5), and 300 μg/day filgrastim (days 0–5). The median follow-up duration was 10 months. Results: A total of 57 out of 67 patients were evaluable for remission after CLAG therapy, of whom 57.9% achieved a complete remission (CR) and the overall remission rate was 77.2%. The median overall survival (OS) was 10.0 months, with a 1-year OS of 40.3 ± 6.0% and 3-year OS of 16.7 ± 5.7%. CR at first induction after the initial diagnosis was associated with a favorable CR. Age above 60 years, high risk stratification, second or higher salvage therapy, and bone marrow (BM) blasts ≥42.1% were correlated with an unfavorable CR. Secondary disease, age ≥60 years, high risk stratification, and second or higher salvage therapy were associated with worse OS. Patients developed thrombocytopenia (41, 61%), febrile neutropenia (37, 55%), leukopenia (33, 49%), neutropenia (18, 27%), and anemia (9, 13%). Conclusion: CLAG was effective and well tolerated for R/R AML. BM blasts ≥42.1%, age ≥60 years, high risk stratification, and second or higher salvage therapy were independent factors for a poor prognosis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1397-1397
Author(s):  
Diego Chacon ◽  
Ali Braytee ◽  
Yizhou Huang ◽  
Julie Thoms ◽  
Shruthi Subramanian ◽  
...  

Background: Acute myeloid leukemia (AML) is a highly heterogeneous malignancy and risk stratification based on genetic and clinical variables is standard practice. However, current models incorporating these factors accurately predict clinical outcomes for only 64-80% of patients and fail to provide clear treatment guidelines for patients with intermediate genetic risk. A plethora of prognostic gene expression signatures (PGES) have been proposed to improve outcome predictions but none of these have entered routine clinical practice and their role remains uncertain. Methods: To clarify clinical utility, we performed a systematic evaluation of eight highly-cited PGES i.e. Marcucci-7, Ng-17, Li-24, Herold-29, Eppert-LSCR-48, Metzeler-86, Eppert-HSCR-105, and Bullinger-133. We investigated their constituent genes, methodological frameworks and prognostic performance in four cohorts of non-FAB M3 AML patients (n= 1175). All patients received intensive anthracycline and cytarabine based chemotherapy and were part of studies conducted in the United States of America (TCGA), the Netherlands (HOVON) and Germany (AMLCG). Results: There was a minimal overlap of individual genes and component pathways between different PGES and their performance was inconsistent when applied across different patient cohorts. Concerningly, different PGES often assigned the same patient into opposing adverse- or favorable- risk groups (Figure 1A: Rand index analysis; RI=1 if all patients were assigned to equal risk groups and RI =0 if all patients were assigned to different risk groups). Differences in the underlying methodological framework of different PGES and the molecular heterogeneity between AMLs contributed to these low-fidelity risk assignments. However, all PGES consistently assigned a significant subset of patients into the same adverse- or favorable-risk groups (40%-70%; Figure 1B: Principal component analysis of the gene components from the eight tested PGES). These patients shared intrinsic and measurable transcriptome characteristics (Figure 1C: Hierarchical cluster analysis of the differentially expressed genes) and could be prospectively identified using a high-fidelity prediction algorithm (FPA). In the training set (i.e. from the HOVON), the FPA achieved an accuracy of ~80% (10-fold cross-validation) and an AUC of 0.79 (receiver-operating characteristics). High-fidelity patients were dichotomized into adverse- or favorable- risk groups with significant differences in overall survival (OS) by all eight PGES (Figure 1D) and low-fidelity patients by two of the eight PGES (Figure 1E). In the three independent test sets (i.e. form the TCGA and AMLCG), patients with predicted high-fidelity were consistently dichotomized into the same adverse- or favorable- risk groups with significant differences in OS by all eight PGES. However, in-line with our previous analysis, patients with predicted low-fidelity were dichotomized into opposing adverse- or favorable- risk groups by the eight tested PGES. Conclusion: With appropriate patient selection, existing PGES improve outcome predictions and could guide treatment recommendations for patients without accurate genetic risk predictions (~18-25%) and for those with intermediate genetic risk (~32-35%). Figure 1 Disclosures Hiddemann: Celgene: Consultancy, Honoraria; Roche: Consultancy, Honoraria, Research Funding; Bayer: Research Funding; Vector Therapeutics: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Research Funding. Metzeler:Celgene: Honoraria, Research Funding; Otsuka: Honoraria; Daiichi Sankyo: Honoraria. Pimanda:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Beck:Gilead: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-4
Author(s):  
Ashley Zhang ◽  
Yuntao Liu ◽  
Shuning Wei ◽  
Benfa Gong ◽  
Chunlin Zhou ◽  
...  

Background BCOR gene is a transcription repressor that may influence normal hematopoiesis and is associated with poor prognosis in acute myeloid leukemia (AML) with normal karyotype. However, due to the rare mutation frequency in AML (3.8%-5%), clinical characteristics and prognosis of AML patients with BCOR mutation including abnormal karyotype are still unknown. In addition, the clonal evolution of AML patients with BCOR mutation has not been fully investigated. Methods By means of next generation of sequencing, we performed sequencing of 114 genes related to hematological diseases including BCOR on 509 newly diagnosed AML patients (except for acute promyelocytic leukemia) from March 2017 to April 2019. The 2017 European Leukemia Net (ELN) genetic risk stratification was used to evaluate prognosis. Overall survival (OS) was defined as the time from diagnosis to death or last follow-up. Relapse-free survival (RFS) was measured from remission to relapse or death. Clonal evolution was investigated through analyzing bone marrow samples at diagnosis, complete remission (CR) and relapse from the same patient. Result Among 509 AML patients, we found BCOR mutations in 23 patients (4.5%). BCOR mutations were enriched in patients with mutations of RUNX1 (p = 0.008) and BCORL1 (p = 0.0003). Patients with BCOR mutation were more at adverse ELN risk category compared to patients without BCOR mutation (p = 0.007). Besides, there was a larger proportion of patients with normal karyotype in BCOR mutation group but it had not reached statistical difference (62.5% vs 45.5%, p = 0.064). The abnormal karyotype in patients with BCOR mutations included trisomy 8, t(9;11), inv(3), -7 and complex karyotype.There were no significant differences in age, sex, white blood cell count, hemoglobin or platelet count between the two groups. More patients died during induction (13.0% vs 3.5%, p = 0.56) and fewer patients achieved CR after 2 cycles of chemotherapy when patients had BCOR mutations (69.6% vs 82.5%, p = 0.115) but the difference had not reached statistical difference . Patients with BCOR mutations had inferior 2-year OS (52.1% vs 70.7%, p = 0.0094) and 2-year RFS (29.8% vs 61.1%, p = 0.0090). After adjustment for ELN risk stratification, BCOR mutation was still remain a poor prognostic factor. However, the adverse prognostic impact of BCOR mutation is overcome by hematopoietic stem cell transplantation (HSCT), in which there was no difference between BCOR mutation group and wild type group (p = 0.474) (Figure 1). Through analysis of paired bone marrow sample at diagnosis, remission and relapse, we revealed the clonal evolution that BCOR mutation was only detected at diagnosis sample as a subclone and diminished at CR and relapse while TP53 mutation was only detected at relapse with a variant allele frequency (VAF) of 25.5%. We also found BCOR mutation at another patient's diagnosis and relapse sample while TP53 mutation was detected at relapse with VAF of 11.8%. Conclusion BCOR is associated with RUNX1 mutation and higher ELN risk. AML patients with BCOR mutation including normal and abnormal karyotype conferred a worse impact on OS that can be overcome by HSCT. BCOR mutation is a subclone at diagnosis or relapse in some patients, in which TP53 mutation clone occurred at relapse. Disclosures No relevant conflicts of interest to declare.


Hematology ◽  
2003 ◽  
Vol 2003 (1) ◽  
pp. 82-101 ◽  
Author(s):  
Bob Löwenberg ◽  
James D. Griffin ◽  
Martin S. Tallman

Abstract The therapeutic approach to the patient with acute myeloid leukemia (AML) currently evolves toward new frontiers. This is particularly apparent from the entree of high-throughput diagnostic technologies and the identification of prognostic and therapeutic targets, the introduction of therapies in genetically defined subgroups of AML, as well as the influx of investigational approaches and novel drugs into the pipeline of clinical trials that target pathogenetic mechanisms of the disease. In Section I, Dr. Bob Löwenberg reviews current issues in the clinical practice of the management of adults with AML, including those of older age. Dr. Löwenberg describes upcoming possibilities for predicting prognosis in defined subsets by molecular markers and reviews experimental strategies to improve remission induction and postinduction treatment. In Section II, Dr. James Griffin reviews the mechanisms that lead to activation of tyrosine kinases by mutations in AML, the consequences of that activation for the cell, and the opportunities for targeted therapy and discusses some examples of developing novel drugs (tyrosine kinase inhibitors) and their effectiveness in AML (FLT3). In Section III, Dr. Martin Tallman describes the evaluation and management of patients with acute promyelocytic leukemia, a notable example of therapeutic progress in a molecularly defined entity of leukemia. Dr. Tallman focuses on the molecular genetics of APL, current curative treatment strategies and approaches for patients with relapsed and refractory disease. In addition, areas of controversy regarding treatment are addressed.


Leukemia ◽  
2018 ◽  
Vol 33 (2) ◽  
pp. 348-357 ◽  
Author(s):  
Nicolas Duployez ◽  
Alice Marceau-Renaut ◽  
Céline Villenet ◽  
Arnaud Petit ◽  
Alexandra Rousseau ◽  
...  

2020 ◽  
Vol 99 (11) ◽  
pp. 2547-2553
Author(s):  
Olivier Ballo ◽  
Eva-Maria Kreisel ◽  
Fagr Eladly ◽  
Uta Brunnberg ◽  
Jan Stratmann ◽  
...  

Abstract Patients with acute myeloid leukemia (AML) are often exposed to broad-spectrum antibiotics and thus at high risk of Clostridioides difficile infections (CDI). As bacterial infections are a common cause for treatment-related mortality in these patients, we conducted a retrospective study to analyze the incidence of CDI and to evaluate risk factors for CDI in a large uniformly treated AML cohort. A total of 415 AML patients undergoing intensive induction chemotherapy between 2007 and 2019 were included in this retrospective analysis. Patients presenting with diarrhea and positive stool testing for toxin-producing Clostridioides difficile were defined to have CDI. CDI was diagnosed in 37 (8.9%) of 415 AML patients with decreasing CDI rates between 2013 and 2019 versus 2007 to 2012. Days with fever, exposition to carbapenems, and glycopeptides were significantly associated with CDI in AML patients. Clinical endpoints such as length of hospital stay, admission to ICU, response rates, and survival were not adversely affected. We identified febrile episodes and exposition to carbapenems and glycopeptides as risk factors for CDI in AML patients undergoing induction chemotherapy, thereby highlighting the importance of interdisciplinary antibiotic stewardship programs guiding treatment strategies in AML patients with infectious complications to carefully balance risks and benefits of anti-infective agents.


Sign in / Sign up

Export Citation Format

Share Document