scholarly journals The environmental risk of storing vehicles over the soil

2020 ◽  
Vol 11 (6) ◽  
pp. 1-12
Author(s):  
Cleyton Nascimento Makara ◽  
Larissa Kummer ◽  
Maurici Luzia Charnevski Del Monego

Automotive vehicles are a potential source of heavy metal contamination of the soil due to their lead-acid batteries and the use of metals in their structure and paint pigments. Understanding the characteristics of heavy metal soil contamination and identifying their environmental exposure provides important information for making decisions regarding remediation of contaminated soils. The objective of the present work was to evaluate metal contamination (Cd, Pb, Ni, Zn, Cu e Cr) in 35 soil samples (fraction<2 mm). The samples were collected from two unpaved/unsealed storage areas used by the Highway Patrol (Polícia Rodoviária Federal - PRF) for storing apprehended vehicles, one located in Araucária (AR) and one Colombo (CL), in the metropolitan region of Curitiba/PR, Brazil. Assays were performed to determine organic carbon (OC) and pH. For analysis of metals, the samples were prepared by acid digestion (method EPA 3050-B) and measured by ICP-OES. The results were evaluated according to Resolution CONAMA 420, geoaccumulation index (Igeo), contamination factor (CF) and Pearson correlation analysis. The textural composition of the soil at AR and CL reflect a high degree of heterogeneity and distinct chemical and physical characteristics. The AR site had a higher level of sand and a more acidic pH than CL, and concentrations of the analyzed elements between prevention and investigation values according to Resolution CONAMA 420/2009. The CL site had a higher concentration of clay and OC, and a less acidic pH than AR. Only one collected point at CL had a concentration of Cu above the prevention value. In both AR and CL, the element Cd was below detectability with methodology employed. The spatial distribution of the cars associated with the soil texture and the analyzed elements exhibited a random surface distribution of elements. The OC content, soil pH and texture associated with Igeo, CF and Pearson correlation suggests that both environments suffer an input of metals at different points. The input of heavy metals from stored vehicles and the possible anthropogenic impact on the soil is evident.

Author(s):  
Diana FLORESCU ◽  
Andreea IORDACHE ◽  
Claudia SANDRU ◽  
Elena HORJ ◽  
Roxana IONETE ◽  
...  

As a result of accidental spills or leaks, industrial wastes may enter in soil and in streams. Some of the contaminants may not be completely removed by treatment processes; therefore, they could become a problem for these sources. The use of synthetic products (e.g. pesticides, paints, batteries, industrial waste, and land application of industrial or domestic sludge) can result in heavy metal contamination of soils.


2017 ◽  
Vol 3 (01) ◽  
pp. 25-31 ◽  
Author(s):  
Charu Gangwar ◽  
Aprajita Singh ◽  
Raina Pal ◽  
Atul Kumar ◽  
Saloni Sharma ◽  
...  

E-waste is a popular name given to those electronic products nearing the end of their useful life which has become a major source of heavy metal contamination in soil and hence, became the global concern. Various samples of soil were collected from different sites and were determined for heavy metal analysis by the ICP-AAS after the digestion process. The main source of contamination is illegal e-waste recycling activities such as burning of PCB's acid baths etc. Different soil indices like contamination factor, I-geo, pollution load index, were calculated to determine the quality of the soil. Results indicate that e-waste recycling and industrial area are strongly contaminated by the heavy metals. Physiological analysis of soil revealed that e-waste processing and industrial activities decrease the soil pH and organic matter while enhancing the electrical conductivity of soil. The exceedance of metal contamination imposed negative impact to the soil environment and human health.


2019 ◽  
Vol 40 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Hanane Talbi ◽  
Slimane Kachi

Abstract The surface sediments of Seybouse River and its affluents have been studied and assessed to determine their degree of heavy metal contamination (Cd, Pb, Cu, Ni, Zn and Fe). The contamination factor (CF), the contamination degree (CD) and statistical tools (correlation and APC) has been used in assessing: metal contamination, sediment toxicity and to identify the origin of metals which have enriched the sediments. Heavy metals concentrations of sediments are generally heterogeneous and vary according to the metal and the sampling site. The results have been compared to the reference values of the unpolluted sediments and have shown that Seybouse River sediments are more contaminated by Pb, Cd and Zn respectively. CF values indicate moderate to considerable contamination for most stations. CD values show that the most toxic sediments are located mainly at the estuary and downstream of large agglomerations. The matrix correlation between the metallic elements shows a very strong correlation between Pb, Cd, Cu and Zn indicating that they have a similar source. These different metallic elements appear as traces of anthropogenic pollution. Despite using wastewater treatment plants as protective measures, Seybouse River pollution is remaining a big issue and more efforts has to be done by local authorities.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Sharhabil Musa Yahaya ◽  
Fatima Abubakar ◽  
Nafiu Abdu

AbstractThe incidence of heavy metal contamination in Zamfara State, northern Nigeria, due to artisanal mining in some villages has resulted in the pollution of a vast area of land and water. This study evaluated the extent of environmental risks caused by heavy metals. It involved five (5) villages (Bagega, Dareta, Sunke, Tunga, and Abare) where mining activities were taking place and Anka town with no record of mining activities served as control. In each of the five villages, three sites (3) were identified as a mining site, processing site, and village making a total of sixteen (16) sites. Bulked soil samples were collected in triplicate and analyzed for iron, lead, cadmium, chromium, zinc, and nickel using flame atomic absorption spectrophotometry. Measured concentrations of the heavy metals in soils were then used to calculate the pollution and ecological risk pose by heavy metals. Their concentrations were in the order Fe > Pb > Cr > Zn > Cd > Ni, with Pb and Cd having a concentration higher than permissible levels for soils and accounted for 98.64% of the total potential ecological risk. Also, all the different pollution indices examined showed that all the sites were polluted with Cd, and all the processing sites were polluted with Pb. This reveals that processing sites pose more risk to heavy metal contamination. Correlation analysis showed a highly significant (p < 0.001) positive correlation between Pb and Zn, Cr and Ni, and a significant (p < 0.01) positive correlation between Fe and Pb, Zn and Cr. The principal component analysis suggested that Pb, Zn, Cr, and Ni likely originated from the same source, i.e., mining activities, and Fe and Cd originated from the abundant parent material in the study area.


Author(s):  
Sukirtee Chejara ◽  
Paras Kamboj ◽  
Y. V. Singh ◽  
Vikas Tandon

Heavy metal contamination has gained popularity worldwide due to their persistent nature in the environment, on the top of that non-biodegradable nature makes its accumulation easy to toxic levels. Understanding the nature of contamination has become a major concern before heavy metals deteriorate the quality of soil; to diagnose heavy metal pollution suitable indices are required. Microbial indices gaining importance because of their sensitive nature towards change in surrounding, which is the imperative quality required to select microbes as environmental indicators. Albeit enough literature is present related to this topic but the information is scattered so role of this chapter is imperative. The chapter will be helpful for the reader to provide a thorough understanding of merits and demerits of microbiological indices for heavy metal contaminated and restituted soils. The changes in microbiological indices and their mechanism of response towards heavy metal stress are effectively summarized. Research gap and future needs of microbial diagnosis of heavy metal contaminated soils are discussed.


2018 ◽  
Vol 13 (1) ◽  
pp. 159-164
Author(s):  
Arti Yadav ◽  
Pawan Kumar Yadav

Wastewater irrigation is practiced in outskirts of several cities of India. Enhanced growth and productivity of crops possess threat of heavy metal accumulation while irrigated with wastewater. Assessment of heavy metal accumulation in soil flooded with wastewater of Mawaiya drain in Naini region of Allahabad district, using parameter of contamination factor and pollution load index (PLI). Samples of soil were taken from the fields irrigated with wastewater and analyzed for heavy metals by using Atomic Absorption Spectroscopy (AAS). The maximum accumulation of heavy metal was observed for iron in soil. Heavy metal contamination is soil was assessed by estimation of contamination factor which was observed for Cu (0.7858), Fe (296.1864), Zn (0.4304), Pb (1.1661) and Ni (1.8912). Pollution load index (PLI) used for assessment of soil contamination and observed that maximum contamination (PLI, 74.31) was in water stressed conditions of summer. Heavy metals concentration in wastewater and accumulation in soil found within WHO limits in present study which may increase if unmanaged wastewater flooding continued.


2013 ◽  
Vol 1 (No. 4) ◽  
pp. 158-163 ◽  
Author(s):  
Akbar Khalid Farooq ◽  
Hale Wiliam HG ◽  
Athar Alistair D Headley and Mohammad

Environmental pollution of heavy metals from automobiles has attained much attention in the recent past. The present research was conducted to study heavy metal contamination in roadside soils of northern England. Roadside soil samples were collected from 35 sites in some counties of northern England and analysed for four heavy metals (cadmium, copper, lead, zinc). Their concentrations and distributions in different road verge zones (border, verge, slope, ditch) were determined. Lead concentration was the highest in the soil and ranged from 25.0 to 1198.0 &mu;g/g (mean, 232.7 &mu;g/g). Zinc concentration ranged from 56.7 to 480.0 &mu;g/g (mean, 174.6 &mu;g/g) and copper concentration ranged from 15.5 to 240.0 &mu;g/g (mean, 87.3 &mu;g/g). Cadmium concentration was the lowest in the soil and varied from 0.3 to 3.8 &mu;g/g (mean, 1.4 &mu;g/g). Though the levels of heavy metals in roadside soils were higher as compared to their natural background levels in British soils, their concentrations in general, however, were below the &lsquo;critical trigger concentrations&rsquo; for the contaminated soils. All the four heavy metals exhibited a significant decrease in the roadside soils with the increasing distance from the road. The border zone had the highest mean concentration of the four metals whereas the ditch zone exhibited the lowest mean concentration.


2019 ◽  
Vol 3 (1) ◽  
pp. 12-21
Author(s):  
Ashwini Supekar ◽  
Ashok Issac ◽  
Ashwini Rane

Pre-urban, urban and post-urban stretch of the Mula River in Pune District of Maharashtra (India) is examined for quantification of heavy metals (Cr, Co, Ni, Cu, Zn and Cd), calculation of the Pollution Load Index (PLI) and Contamination Factor (CF). They were estimated from the surface sediments (0-5 cm) at 10 sampling sites along the Mula river. High Cr anomaly (Max. 388.20 ppm) followed by Co (Max. 104.91 ppm), Ni (Max. 167.44 ppm), Cu (Max. 391.35 ppm), Zn (Max. 507.91 ppm) and Cd (Max. 2.38 ppm) is seen at various locations mostly encompassing the urban stretch. PLI is found to be high i.e., >1 in urban sites like Khadki, Kalyaninagar and Kharadi than the rural downstream sites. There is negligible mobility of the heavy metals and the urban floodplains are increasingly accumulating the heavy metals to a highly hazardous level.


Sign in / Sign up

Export Citation Format

Share Document