scholarly journals Super-resolution for Ocean Bathymetric Maps Using Deep Learning Approaches : A Comparison and Validation

2021 ◽  
Vol 32 (1) ◽  
pp. 3-13
Author(s):  
Mitsuko HIDAKA ◽  
Daisuke MATSUOKA ◽  
Tatsu KUWATANI ◽  
Junji KANEKO ◽  
Takafumi KASAYA ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3929 ◽  
Author(s):  
Grigorios Tsagkatakis ◽  
Anastasia Aidini ◽  
Konstantina Fotiadou ◽  
Michalis Giannopoulos ◽  
Anastasia Pentari ◽  
...  

Deep Learning, and Deep Neural Networks in particular, have established themselves as the new norm in signal and data processing, achieving state-of-the-art performance in image, audio, and natural language understanding. In remote sensing, a large body of research has been devoted to the application of deep learning for typical supervised learning tasks such as classification. Less yet equally important effort has also been allocated to addressing the challenges associated with the enhancement of low-quality observations from remote sensing platforms. Addressing such channels is of paramount importance, both in itself, since high-altitude imaging, environmental conditions, and imaging systems trade-offs lead to low-quality observation, as well as to facilitate subsequent analysis, such as classification and detection. In this paper, we provide a comprehensive review of deep-learning methods for the enhancement of remote sensing observations, focusing on critical tasks including single and multi-band super-resolution, denoising, restoration, pan-sharpening, and fusion, among others. In addition to the detailed analysis and comparison of recently presented approaches, different research avenues which could be explored in the future are also discussed.


2020 ◽  
Author(s):  
Anish Mukherjee

The quality of super-resolution images largely depends on the performance of the emitter localization algorithm used to localize point sources. In this article, an overview of the various techniques which are used to localize point sources in single-molecule localization microscopy are discussed and their performances are compared. This overview can help readers to select a localization technique for their application. Also, an overview is presented about the emergence of deep learning methods that are becoming popular in various stages of single-molecule localization microscopy. The state of the art deep learning approaches are compared to the traditional approaches and the trade-offs of selecting an algorithm for localization are discussed.


Author(s):  
Sakshi Takkar ◽  
Anuj Kakran ◽  
Veerpal Kaur ◽  
Manik Rakhra ◽  
Manish Sharma ◽  
...  

Plant diseases are spread by a variety of pests, weeds, and pathogens and may have a devastating effect on agriculture, if not handled in a timely manner. Farmers face umpteen challenges from a proper water supply, untimely rain, storage facilities, and several plant diseases. Crops disease is the primary threat and it causes enormous loss to farmers in terms of production and finance. Identifying the disease from several hectares of agricultural land is a very difficult practice even with the presence of modern technology. Accurate and rapid illness prediction for early illness treatment to crops minimizes economical loss to the individual and further proves to be productive for healthy crops. Many studies use modern deep learning approaches to improve the accuracy and performance of object detection and identification systems. The suggested method notifies farmers of different agricultural illnesses, prompting them to take further essential precautions before the disease spreads to the whole agricultural field. The primary objective of this study is to detect the illnesses as soon as they begin to spread on the leaves of the plants. Super-Resolution Convolutional Neural Network (SRCNN) and Bicubic models are employed in the system to identify healthy and diseased leaves with an accuracy of 99.175 % and 99.156 % respectively.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
YiNan Zhang ◽  
MingQiang An

Medical images play an important role in medical diagnosis and research. In this paper, a transfer learning- and deep learning-based super resolution reconstruction method is introduced. The proposed method contains one bicubic interpolation template layer and two convolutional layers. The bicubic interpolation template layer is prefixed by mathematics deduction, and two convolutional layers learn from training samples. For saving training medical images, a SIFT feature-based transfer learning method is proposed. Not only can medical images be used to train the proposed method, but also other types of images can be added into training dataset selectively. In empirical experiments, results of eight distinctive medical images show improvement of image quality and time reduction. Further, the proposed method also produces slightly sharper edges than other deep learning approaches in less time and it is projected that the hybrid architecture of prefixed template layer and unfixed hidden layers has potentials in other applications.


2020 ◽  
Vol 32 (18) ◽  
pp. 14519-14520
Author(s):  
Pourya Shamsolmoali ◽  
M. Emre Celebi ◽  
Ruili Wang

2021 ◽  
Author(s):  
Christoph Spahn ◽  
Romain F. Laine ◽  
Pedro Matos Pereira ◽  
Estibaliz Gómez-de-Mariscal ◽  
Lucas von Chamier ◽  
...  

Deep Learning (DL) is rapidly changing the field of microscopy, allowing for efficient analysis of complex data while often outperforming classical algorithms. This revolution has led to a significant effort to create user-friendly tools allowing biomedical researchers with little background in computer sciences to use this technology effectively. Thus far, these approaches have mainly focused on analysing microscopy images from eukaryotic samples and are still underused in microbiology. In this work, we demonstrate how to use a range of state-of-the-art artificial neural-networks particularly suited for the analysis of bacterial microscopy images, using our recently developed ZeroCostDL4Mic platform. We showcase different DL approaches for segmenting bright field and fluorescence images of different bacterial species, use object detection to classify different growth stages in time-lapse imaging data, and carry out DL-assisted phenotypic profiling of antibiotic-treated cells. To also demonstrate the DL capacity to enhance low-phototoxicity live-cell microscopy, we showcase how image denoising can allow researchers to attain high-fidelity data in faster and longer imaging. Finally, artificial labelling of cell membranes and predictions of super-resolution images allow for accurate mapping of cell shape and intracellular targets. To aid in the training of novice users, we provide a purposefully-built database of training and testing data, enabling bacteriologists to quickly explore how to analyse their data through DL. We hope this lays a fertile ground for the efficient application of DL in microbiology and fosters the creation of novel tools for bacterial cell biology and antibiotic research.


2019 ◽  
Vol 2019 (1) ◽  
pp. 360-368
Author(s):  
Mekides Assefa Abebe ◽  
Jon Yngve Hardeberg

Different whiteboard image degradations highly reduce the legibility of pen-stroke content as well as the overall quality of the images. Consequently, different researchers addressed the problem through different image enhancement techniques. Most of the state-of-the-art approaches applied common image processing techniques such as background foreground segmentation, text extraction, contrast and color enhancements and white balancing. However, such types of conventional enhancement methods are incapable of recovering severely degraded pen-stroke contents and produce artifacts in the presence of complex pen-stroke illustrations. In order to surmount such problems, the authors have proposed a deep learning based solution. They have contributed a new whiteboard image data set and adopted two deep convolutional neural network architectures for whiteboard image quality enhancement applications. Their different evaluations of the trained models demonstrated their superior performances over the conventional methods.


2019 ◽  
Author(s):  
Qian Wu ◽  
Weiling Zhao ◽  
Xiaobo Yang ◽  
Hua Tan ◽  
Lei You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document