scholarly journals Minimization of Welding Time for an AC Resistance Spot Welding System With 60Hz Transformer

2010 ◽  
Vol 15 (3) ◽  
pp. 218-225
Author(s):  
Jin-Kyu Seok ◽  
Sung-Kwan Kang ◽  
Woong-Hyub Song ◽  
Eui-Cheol Nho ◽  
In-Dong Kim ◽  
...  
Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 710 ◽  
Author(s):  
Khuenkaew ◽  
Kanlayasiri

This research examines the weldment characteristics and mechanical properties of lap joints of SUS316L/SUS425 stainless steels using resistance spot welding under variable weld currents and welding times. The weld current was varied between 7.0, 8.5, and 10.0 kA, and the welding time between 25, 38, and 50 cycles. The weldment quality characteristics under study were the depth of fusions, indentation depths, and nugget diameter, and the mechanical properties included the tensile shear force (TSF) and micro Vickers hardness. Phase transformation and solidification were characterized using scanning electron microscopy and energy dispersive X-ray spectrometry, together with Schaeffler and pseudo-binary predictive phase diagrams. The results revealed that the weldment quality was positively correlated with weld current and welding time, as were the TSF and micro hardness. The optimal welding condition was achieved under a 10.0 kA weld current and 25-cycle welding time. Under the optimal condition, the fusion zone exhibited compression-direction columnar grains consisting of austenite, ferrite, and martensite and the solidification was of ferrite plus Widmanstatten austenite.


ROTASI ◽  
2013 ◽  
Vol 15 (2) ◽  
pp. 44
Author(s):  
Haikal Haikal ◽  
Triyono Triyono

Resistance spot welding (RSW) is the most widely used for joining thin sheet metals in automotive industry. Various applications of dissimilar materials and thicknesses were commonly found in many spot welding processes especially in the manufacture of car body. The resistance spot welding of dissimilar materials are generally more challenge than similar materials due to differences in the physical, chemical, and mechanical properties of the base metals. Differences of materials have an impact on heat input generated at the spot welding. Diameter of the weld nugget size is influenced by several parameters such as electric current, welding time, different types of material, and the thickness of the plate. Nugget diameter will influence on physical and mechanical properties weld such as microstructure, shear strength and hardness. For practical use, various industrial standards have recommended a minimum weld size for a given sheet thickness, mostly in the form of tables. For example the American Welding Society (AWS), Society of Automotive Engineering (SAE) and the American National Standards Institute (ANSI). They were only suitable to be apllied on the similar metal and thickness joint because in this joint, symetrical nugget will be formed. Meanwhile a type of dissimilar metal that joined by spot welding method will result in the asymetrical nugget. This paper aims to review the results of researchs on the similar and dissimilar resistance spot welded joint to evaluate the use of similar metals weld parameters and standards on the dissimilar metals weld. It was determined that parameters welding such as electric current, welding time, and the standard for similar metals weld can not be applied on the dissimilar metals weld. The asymetrical nugget shape decreased shear strength on the weld nugget. The most important factor that was considered on the dissimilar metals weld to make high quality weld joint was nugget diameter. If the nugget diameter weld increased the strength of welding will increase.


2011 ◽  
Vol 216 ◽  
pp. 666-670 ◽  
Author(s):  
Prachya Peasura

This research was study the effect of resistance spot welding process on physical properties. The specimen was austenitic stainless steel sheet of 1 mm. The experiments with 23 factorial design. The factors used in this study are welding current at 8,000 and 12,000 Amp, welding time at 8 and 12 cycle and electrode force were set at 1.5 and 2.5 kN. The welded specimens were tested by tensile shear testing according to JIS Z 3136: 1999 and macro structure testing according to JIS Z 3139: 1978. The result showed that the welding current, welding time and electrode force had interaction on tensile shear and nugget size at 95% confidential (P value < 0.05). Factors affecting the tensile shear are the most welding current of 12,000 amp., welding time of 8 cycle and electrode force of 2.5 kN. were tensile shear of 9.83 kN. The nugget size was maximum at 7.15 mm. on welding current of 12,000 amp., welding time of 12 cycle and electrode force of 1.5 kN This research can bring information to the foundation in choosing the appropriate parameters to resistance spot welding process.


2008 ◽  
Vol 320 (20) ◽  
pp. e878-e883 ◽  
Author(s):  
Klemen Deželak ◽  
Beno Klopčič ◽  
Gorazd Štumberger ◽  
Drago Dolinar

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ján Viňáš ◽  
Ľuboš Kaščák ◽  
Miroslav Greš

Abstract The paper presents the results of resistance spot welding of hot-dip galvanized microalloyed steel sheets used in car body production. The spot welds were made with various welding currents and welding time values, but with a constant pressing force of welding electrodes. The welding current and welding time are the dominant characteristics in spot welding that affect the quality of spot welds, as well as their dimensions and load-bearing capacity. The load-bearing capacity of welded joints was evaluated by tensile test according to STN 05 1122 standard and dimensions and inner defects were evaluated by metallographic analysis by light optical microscope. Thewelding parameters of investigated microalloyed steel sheets were optimized for resistance spot welding on the pneumatic welding machine BPK 20.


Otopro ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1
Author(s):  
Riantono Rasyid ◽  
Novi Sukma Drastiawati

The development of technology in manufacturing is currently very fast. One of the important processes involved is joining, including the process of resistance spot welding or better known as spot welding. The use of point welding has several advantages, including a neat shape of the joint, the process is faster, the connection is tighter and the operation is relatively easy and does not require filler metal. The connection of relatively thin plate-shaped steel using resistance spot welding is an alternative option that is widely used by the automotive parts production industry. However, there are no data regarding the best time and data regarding the hardness test, nugget diameter, and shear test on SPCEN steel material. This study aims to determine the effect of spot welding time on hardness, shear strength and nugget diameter on SPCEN steel material. This study used an experimental method with a time variable of 1 second, 2 seconds and 3 seconds with standard material SPCEN JIS G 3141, standard hardness testing using DIN 50103 and standard shear testing using ASTM D 1002. equal that is 3.3 mm. The lowest average nugget hardness results are found on steel plates marked with the name ABC, time of 1 second with an average nugget hardness of 116.6 HRB and the highest average nugget hardness is found on GHI steel within 3 seconds with an average nugget hardness of 117 , 9 HRB. The lowest average yield of shear strength is found in ABC steel at 1 second with a maximum shear strength of 294.82 N / m² and a maximum load of 1592.01 Newton, the highest average yield of shear strength is found on steel plates marked with the name GHI time 3 seconds with a maximum tension of 415.89 N / m² and a maximum load of 2245.83 Newton. Thus the longer the spot welding time (spot welding), the greater the current used, the greater the heat generated and the hardness and shear strength become stronger. Shows the best time for spot welding (spot welding) of 1.6 mm SPCEN steel plate in 3 seconds.


Manufacturing ◽  
2002 ◽  
Author(s):  
Wei Li

Contact areas at both electrode-to-sheet and sheet-to-sheet interfaces are important in the resistance spot welding process. Given electrode force and welding time, contact areas strongly affect the amount of electrical current needed to make a good weld. In production, process variation such as electrode wear and misalignment causes the contact areas to vary. This effect contributes largely to the quality variation of resistance spot welds. This paper proposes a model-based approach to contact area estimation in the resistance spot welding process. A finite element analysis procedure is used to characterize the contact area behaviors. Based on the understanding from the simulations, a lumped parameter model, together with its calibration and estimation procedures, is developed for on-line applications. The proposed method is demonstrated successful under various process conditions including electrode size, force, welding time and current. It provides important information for on-line monitoring and control of the resistance spot welding process.


2020 ◽  
Vol 10 (17) ◽  
pp. 5860
Author(s):  
Wonho Jung ◽  
Hyunseok Oh ◽  
Dong Ho Yun ◽  
Young Gon Kim ◽  
Jong Pil Youn ◽  
...  

Degraded electrodes in a resistance spot welding system should be replaced to ensure that weld quality is maintained. Welding electrodes are subjected to different environmental and operational loading conditions during use. When they are replaced with a fixed interval, replacement may occur too early (raising maintenance costs) or too late (leading to quality issues). This motivates condition monitoring strategies for resistance spot welding electrode tips. Thus, this paper proposes a modified recurrence plot (RP) for robust condition monitoring of welding electrode tips in resistance spot welding systems. The overall procedure for the proposed condition monitoring approach consists of three steps: (1) transformation of a one-dimensional signal to a two-dimensional image, (2) unsupervised feature extraction with LeNet architecture-based convolutional neural networks, and (3) health indicator calculation. RP methods convert dynamic resistance waveforms to RPs. The original RP method provides an image with binary-colored pixels (i.e., black or white) that makes this method insensitive to the change of the waveform signal. The proposed RP method is devised to be sensitive to the change of the waveform signal, while enhancing robustness to external noise. The performance of the proposed RP method is evaluated by examining simulated aperiodic waveform signals with and without external noise. A case study is presented to examine the proposed method’s ability to monitor the condition of resistance spot welding electrodes. The results show that the proposed method outperforms handcrafted, feature-based condition monitoring methods. This study can be used to accurately determine the lifetime of welding electrodes in real time during the spot welding process.


Sign in / Sign up

Export Citation Format

Share Document