scholarly journals Protein status of winter wheat cell lines with combined tolerace to abiotic stresses

2020 ◽  
Vol 26 ◽  
pp. 259-263
Author(s):  
L. E. Sergeeva ◽  
M. O. Dykun ◽  
L. I. Bronnikova

Aim. Winter wheat cell lines were selected on medium with the addition of lethal doses of Cd2+ cations. Those variants demonstrated stable growth under osmotic stress pressure. The aim of the investigation was the estimation of cell protein status during cultivation under various conditions. Methods. Cd-resistant cell lines of winter wheat (cv. Favoritka) were cultivated under normal conditions and on cultural media with addition of lethal doses of manitol or Cd2+ (stresses I, II). From calli tissues crude protein matter was obtained and detected by Laemmli system electrophoresis. Results. Cd-resistant winter cell lines showed stable growth under any abiotic stress pressure. Electrophoregrams demonstrated peculiar features of some protein fraction accumulation that correlated with the age of cultures and type of stress agent. Conclusions. There were no decrease of total protein pools in calli tissues during cell cultivation under any (manitol, Cd2+) lethal stress pressure. The quantitative accumulation of some protein fractions were correlated with the type of stress agent. This event was especially manifested in variants, cultivated on media with manitol addition. Protein status of Cd-resistant cell lines of winter wheat is the reflection of their combined stress tolerance. Keywords: winter wheat, cell selection, cadmium ions, osmotic stress, tolerant cell line, protein. 

Author(s):  
D. W. Fairbain ◽  
M.D. Standing ◽  
K.L. O'Neill

Apoptosis is a genetically defined response to physiological stimuli that results in cellular suicide. Features common to apoptotic cells include chromatin condensation, oligonucleosomal DNA fragmentation, membrane blebbing, nuclear destruction, and late loss of ability to exclude vital dyes. These characteristics contrast markedly from pathological necrosis, in which membrane integrity loss is demonstrated early, and other features of apoptosis, which allow a non-inflammatory removal of dead and dying cells, are absent. Using heat shock-induced apoptosis as a model for examining stress response in cells, we undertook to categorize a variety of human leukemias and lymphomas with regard to their response to heat shock. We were also interested in determining whether a common temporal order was followed in cells dying by apoptosis. In addition, based on our previous results, we investigated whether increasing heat load resulted in increased apoptosis, with particular interest in relatively resistant cell lines, or whether the mode of death changed from apoptosis to necrosis.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 6
Author(s):  
Silvia La Monica ◽  
Claudia Fumarola ◽  
Daniele Cretella ◽  
Mara Bonelli ◽  
Roberta Minari ◽  
...  

Abemaciclib is an inhibitor of cyclin-dependent kinases (CDK) 4 and 6 that inhibits the transition from the G1 to the S phase of the cell cycle by blocking downstream CDK4/6-mediated phosphorylation of Rb. The effects of abemaciclib alone or combined with the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib were examined in a panel of PC9 and HCC827 osimertinib-resistant non-small cell lung cancer (NSCLC) cell lines carrying EGFR-dependent or -independent mechanisms of intrinsic or acquired resistance. Differently from sensitive cells, all the resistant cell lines analyzed maintained p-Rb, which may be considered as a biomarker of osimertinib resistance and a potential target for therapeutic intervention. In these models, abemaciclib inhibited cell growth, spheroid formation, colony formation, and induced senescence, and its efficacy was not enhanced in the presence of osimertinib. Interestingly, in osimertinib sensitive PC9, PC9T790M, and H1975 cells the combination of abemaciclib with osimertinib significantly inhibited the onset of resistance in long-term experiments. Our findings provide a preclinical support for using abemaciclib to treat resistance in EGFR mutated NSCLC patients progressed to osimertinib either as single treatment or combined with osimertinib, and suggest the combination of osimertinib with abemaciclib as a potential approach to prevent or delay osimertinib resistance in first-line treatment.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2797-2805 ◽  
Author(s):  
Feng-Ting Liu ◽  
Samir G. Agrawal ◽  
John G. Gribben ◽  
Hongtao Ye ◽  
Ming-Qing Du ◽  
...  

Proapoptotic Bcl-2 family member Bax is a crucial protein in the induction of apoptosis, and its activation is required for this process. Here we report that Bax is a short-lived protein in malignant B cells and Bax protein levels decreased rapidly when protein synthesis was blocked. Malignant B cells were relatively resistant to tumor necrosis factor–related apoptosis inducing ligand (TRAIL)–induced apoptosis, and this correlated with low basal Bax protein levels. Furthermore, during treatment with TRAIL, the resistant cell lines showed prominent Bax degradation activity. This degradation activity was localized to mitochondrial Bax and could be prevented by truncated Bid, a BH3-only protein; in contrast, cytosolic Bax was relatively stable. The proteasome inhibitor bortezomib is a potent drug in inducing apoptosis in vitro in malignant B-cell lines and primary chronic lymphocytic leukemic (CLL) cells. In CLL cells, bortezomib induced Bax accumulation, translocation to mitochondria, conformational change, and oligomerization. Accumulation and stabilization of Bax protein by bortezomib-sensitized malignant B cells to TRAIL-induced apoptosis. This study reveals that Bax instability confers resistance to TRAIL, which can be reversed by Bax stabilization with a proteasome inhibitor.


2018 ◽  
Vol 19 (2) ◽  
pp. 576 ◽  
Author(s):  
Katarzyna Zabielska-Koczywąs ◽  
Katarzyna Michalak ◽  
Anna Wojtalewicz ◽  
Mateusz Winiarczyk ◽  
Łukasz Adaszek ◽  
...  

2000 ◽  
Vol 74 (9) ◽  
pp. 4377-4386 ◽  
Author(s):  
Patrick J. Bosque ◽  
Stanley B. Prusiner

ABSTRACT Cultured cell lines infected with prions produce an abnormal isoform of the prion protein (PrPSc). In order to derive cell lines producing sufficient quantities of PrPSc for most studies, it has been necessary to subclone infected cultures and select the subclones producing the largest amounts of PrPSc. Since postinfection cloning can introduce differences between infected and uninfected cell lines, we sought an approach to generate prion-infected cell lines that would avoid clonal artifacts. Using an improved cell blot technique, which permits sensitive and rapid comparison of PrPSc levels in multiple independent cell cultures, we discovered marked heterogeneity with regard to prion susceptibility in tumor cell sublines. We exploited this heterogeneity to derive sublines which are highly susceptible to prion infection and used these cells to generate prion-infected lines without further subcloning. These infected sublines can be compared to the cognate uninfected cultures without interference from cloning artifacts. We also used susceptible cell lines and our modified cell blot procedure to develop a sensitive and reproducible quantitative cell culture bioassay for prions. We found that the sublines were at least 100-fold more susceptible to strain RML prions than to strain ME7 prions. Comparisons between scrapie-susceptible and -resistant cell lines may reveal factors that modulate prion propagation.


1998 ◽  
Vol 89 (9) ◽  
pp. 954-962 ◽  
Author(s):  
Yasuo Iwamoto ◽  
Kazuto Nishio ◽  
Hisao Fukumoto ◽  
Kentaro Yoshimatsu ◽  
Michio Yamakido ◽  
...  

2001 ◽  
Vol 85 (2-3) ◽  
pp. 209-217 ◽  
Author(s):  
Rodney J Holmes ◽  
Mark J McKeage ◽  
Vincent Murray ◽  
William A Denny ◽  
W.David McFadyen
Keyword(s):  

1989 ◽  
Vol 9 (7) ◽  
pp. 2922-2927
Author(s):  
I L Andrulis ◽  
M T Barrett

In Chinese hamster ovary cells, the gene for asparagine synthetase, which spans 20 kilobase pairs, was found to contain a cluster of potential sites for CpG methylation in a 1-kilobase-pair region surrounding the first exon. Fourteen of the sites that could be assayed for methylation by MspI-HpaII digestions were found in this region, with an additional nine MspI sites spread throughout the remainder of the gene. The methylation status of the gene was analyzed in a series of cell lines that differed in the amount of asparagine synthetase activity. The level of expression showed a direct correlation with the extent of methylation of a subset of the MspI sites found in the 5' region of the gene. The rest of the gene was completely methylated in most cell lines. Wild-type cells, which expressed a basal level of asparagine synthetase activity, were partially demethylated in the 5' region. In contrast, asparagine-requiring N3 cells, which lacked detectable mRNA for asparagine synthetase, were methylated throughout the entire gene. Spontaneous revertants of strain N3, selected for growth in asparagine-free medium, exhibited extensive hypomethylation of the asparagine synthetase gene. The methylation pattern of the gene in cell lines that overproduced the enzyme was also examined. Albizziin-resistant cell lines, which had amplified copies of the gene, were extensively demethylated in the 5' region. Overexpression of asparagine synthetase in beta-aspartyl hydroxamate-resistant lines without amplified copies of the gene was also correlated with DNA hypomethylation.


Sign in / Sign up

Export Citation Format

Share Document