scholarly journals FUT8 and Protein Core Fucosylation in Tumours: From Diagnosis to Treatment

2021 ◽  
Vol 12 (13) ◽  
pp. 4109-4120
Author(s):  
Chengcheng Liao ◽  
Jiaxing An ◽  
Suqin Yi ◽  
Zhangxue Tan ◽  
Hui Wang ◽  
...  
Author(s):  
Wenjun Wang ◽  
Yuan Yu ◽  
Hongbo Liu ◽  
Hanxue Zheng ◽  
Liyuan Jia ◽  
...  

Protein glycosylation is an important posttranslational modification that plays a crucial role in cellular function. However, its biological roles in tissue regeneration remain interesting and primarily ambiguous. In this study, we profiled protein glycosylation during head regeneration in planarian Dugesia japonica using a lectin microarray. We found that 6 kinds of lectins showed increased signals and 16 kinds showed decreased signals. Interestingly, we found that protein core fucosylation, manifested by Lens culinaris agglutinin (LCA) staining, was significantly upregulated during planarian head regeneration. Lectin histochemistry indicated that the LCA signal was intensified within the wound and blastemal areas. Furthermore, we found that treatment with a fucosylation inhibitor, 2F-peracetyl-fucose, significantly retarded planarian head regeneration, while supplement with L-fucose could improve DjFut8 expression and stimulate planarian head regeneration. In addition, 53 glycoproteins that bound to LCA were selectively isolated by LCA-magnetic particle conjugates and identified by LC-MS/MS, including the neoblast markers DjpiwiA, DjpiwiB, DjvlgA, and DjvlgB. Overall, our study provides direct evidence for the involvement of protein core fucosylation in planarian regeneration.


2020 ◽  
Vol 92 (4) ◽  
pp. 2896-2901
Author(s):  
Xinyuan Zhao ◽  
Zixiang Yu ◽  
Yi Huang ◽  
Chang Liu ◽  
Mingchao Wang ◽  
...  

1991 ◽  
Vol 39 (10) ◽  
pp. 1321-1330 ◽  
Author(s):  
A D Snow ◽  
R Bramson ◽  
H Mar ◽  
T N Wight ◽  
R Kisilevsky

Previous histochemical studies have suggested a close temporal relationship between the deposition of highly sulfated glycosaminoglycans (GAGs) and amyloid during experimental AA amyloidosis. In the present investigation, we extended these initial observations by using specific immunocytochemical probes to analyze the temporal and ultrastructural relationship between heparan sulfate proteoglycan (HSPG) accumulation and amyloid deposition in a mouse model of AA amyloidosis. Antibodies against the basement membrane-derived HSPG (either protein core or GAG chains) demonstrated a virtually concurrent deposition of HSPGs and amyloid in specific tissue sites regardless of the organ involved (spleen or liver) or the induction protocol used (amyloid enhancing factor + silver nitrate, or daily azocasein injections). Polyclonal antibodies to AA amyloid protein and amyloid P component also demonstrated co-localization to sites of HSPG deposition in amyloid sites, whereas no positive immunostaining was observed in these locales with a polyclonal antibody to the protein core of a dermatan sulfate proteoglycan (known as "decorin"). Immunogold labeling of HSPGs (either protein core or GAG chains) in amyloidotic mouse spleen or liver revealed specific localization of HSPGs to amyloid fibrils. In the liver, heparan sulfate GAGs were also immunolocalized to the lysosomal compartment of hepatocytes and/or Kupffer cells adjacent to sites of amyloid deposition, suggesting that these cells are involved in HSPG production and/or degradation. The close temporal and ultrastructural relationship between HSPGs and AA amyloid further implies an important role for HSPGs during the initial stages of AA amyloidosis.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Katsuyuki Yokoi ◽  
Yoko Nakajima ◽  
Toshihiro Yasui ◽  
Makoto Yoshino ◽  
Tetsushi Yoshikawa ◽  
...  

AbstractWe report a case of a 13-year-old boy with arginase 1 deficiency carrying a new variant in ARG1. Sanger sequencing identified the compound heterozygous variants: NM_000045.4: c.365G>A (p.Trp122*)/c.820G>A (p.Asp274Asn). Although not previously reported, the p.Asp274Asn variant is predicted to have strong pathogenicity because it is located in a highly conserved domain in the protein core and arginase activity in the patient was below measurement sensitivity.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jae Geun Song ◽  
Sang Hoon Lee ◽  
Hyo-Kyung Han

Abstract Background There is a strong need for non-invasive and patient-friendly delivery systems of protein drugs for long-term therapy. However, oral delivery of protein drugs is a big challenge due to many barriers including instability in the gastrointestinal (GI) tract and low permeability. To overcome the absorption barriers in GI tract and improve the patient compliance, this study aimed to develop an M cell targeted-nanocomposite delivery system of protein drugs. Results An aminoclay-protein core complex (AC-Ins) was prepared by using insulin as a model protein and then sequentially coated with Ulex europaeus agglutinin 1 (UEA-1) for M-cell targeting and the pH sensitive polymer, Eudragit® L100 (EUAC-Ins). All nanoparticles were obtained with a high entrapment efficiency (> 90%) and their structural characteristics were confirmed by Fourier transform-infrared spectroscopy, energy dispersive X-ray spectroscopy, and circular dichroism. Among the developed nanoparticles, EUAC-Ins effectively suppressed drug release at pH 1.2, while rapidly released drugs at pH 6.8 due to dissolution of the outer coating layer. The conformational stability of insulin entrapped in EUAC-Ins was well maintained in the presence of proteolytic enzymes. Compared to free insulin, EUAC-Ins increased the membrane transport of insulin by 4.4-fold in M cells. In parallel, oral administration of EUAC-Ins in mice enhanced insulin uptake by 4.1-fold in the intestinal Peyer’s patches and 2.6-fold in intestinal epithelium tissues with normal villi, compared to free insulin. Orally administered EUAC-Ins decreased significantly the blood glucose level in diabetic mice, while the effect of oral insulin solution was negligible. Conclusion An M cell targeted-ternary nanocomposite system obtained by dual coating of the aminoclay-protein core complex with UEA-1 and a pH dependent polymer is promising as an effective oral protein delivery carrier.


1989 ◽  
Vol 264 (3) ◽  
pp. 857-862 ◽  
Author(s):  
P A Gleeson ◽  
M McNamara ◽  
R E H Wettenhall ◽  
B A Stone ◽  
G B Fincher

An arabinogalactan-protein (AGP) purified from the filtrate of liquid-suspension-cultured Italian-ryegrass (Lolium multiflorum) endosperm cells by affinity chromatography on myeloma protein J539-Sepharose was deglycosylated with trifluoromethanesulphonic acid to remove polysaccharide chains that are covalently associated with hydroxyproline residues in the peptide component of the proteoglycan. The protein core, which accounts for less than 10% (w/w) of the intact proteoglycan, was purified by h.p.l.c. It has an apparent Mr of 35,000, but reacts very poorly with both Coomassie Brilliant Blue R and silver stains. Amino-acid-sequence analysis of the N-terminus of the h.p.l.c.-purified protein core and of tryptic peptides generated from the unpurified protein reveals a high content of hydroxyproline and alanine. These are sometimes arranged in short (Ala-Hyp) repeat sequences of up to six residues. Polyclonal antibodies raised against the protein core do not cross-react with native AGP, the synthetic peptide (Ala-Hyp)4, poly-L-hydroxyproline or poly-L-proline. The results suggest that the polysaccharide chains in the native AGP render the protein core of the proteoglycan inaccessible to the antibodies and that the immunodominant epitopes include domains of the protein other than those rich in Ala-Hyp repeating units.


Sign in / Sign up

Export Citation Format

Share Document