scholarly journals Protein Core Fucosylation Regulates Planarian Head Regeneration via Neoblast Proliferation

Author(s):  
Wenjun Wang ◽  
Yuan Yu ◽  
Hongbo Liu ◽  
Hanxue Zheng ◽  
Liyuan Jia ◽  
...  

Protein glycosylation is an important posttranslational modification that plays a crucial role in cellular function. However, its biological roles in tissue regeneration remain interesting and primarily ambiguous. In this study, we profiled protein glycosylation during head regeneration in planarian Dugesia japonica using a lectin microarray. We found that 6 kinds of lectins showed increased signals and 16 kinds showed decreased signals. Interestingly, we found that protein core fucosylation, manifested by Lens culinaris agglutinin (LCA) staining, was significantly upregulated during planarian head regeneration. Lectin histochemistry indicated that the LCA signal was intensified within the wound and blastemal areas. Furthermore, we found that treatment with a fucosylation inhibitor, 2F-peracetyl-fucose, significantly retarded planarian head regeneration, while supplement with L-fucose could improve DjFut8 expression and stimulate planarian head regeneration. In addition, 53 glycoproteins that bound to LCA were selectively isolated by LCA-magnetic particle conjugates and identified by LC-MS/MS, including the neoblast markers DjpiwiA, DjpiwiB, DjvlgA, and DjvlgB. Overall, our study provides direct evidence for the involvement of protein core fucosylation in planarian regeneration.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xue Ding ◽  
Linxia Song ◽  
Yahong Han ◽  
Yingbo Wang ◽  
Xiaowang Tang ◽  
...  

Objective. To investigate the effects of different concentrations of Fe3+ on the acute toxicity and regeneration of planarian at different temperatures. Method. The planarians were treated with 40 mg/l, 50 mg/l, 60 mg/l, and 70 mg/l Fe3+ solution and placed in 15°C, 20°C, and 25°C, respectively, to observe the mortality and the poisoning pattern of the planarian. In addition, the planarians were cut into three parts of head, trunk, and tail, then placed in Fe3+ solution at concentrations of 10 mg/l, 15 mg/l, 20 mg/l, and 30 mg/l, and placed in 15°C, 20°C, and 25°C respectively, and the regeneration rate of the planarian was investigated. Results. At the same temperature, in the concentration of Fe3+ from 40 mg/l to 70 mg/l, the mortality of the planarian increased with the increasing of the concentration of Fe3+; at the same concentration and different temperatures, the death speed of the planarian is the fastest at 20°C, the next at 25°C, and the lowest at 15°C, indicating that the toxic effect of Fe3+ can be accelerated at a suitable temperature of 20°C. At the same temperature, in the low concentration of Fe3+ from 10 mg/l to 30 mg/l, the regeneration rate of the planarian gradually decreased with the increasing of the concentration of Fe3+; at the same concentration and different temperature, the regeneration rate of planarian was faster at 20°C and 25°C, but the difference between 20°C and 25°C was small, and the slowest at 15°C, indicating that the low temperature significantly affects the planarian regeneration speed. The study also found the regeneration rates of the head, trunk, and tail of the planarian were different; the head regeneration was the fastest, the trunk was the second, and the tail was the slowest. Conclusion. Fe3+ had obvious toxic effects on the survival and regeneration of planarian; the planarian is sensitive to Fe3+ and may be used to detect Fe3+ water pollution; in addition, temperature can affect the toxic effects of Fe3+ and thus affect the survival and regeneration of the planarian. Therefore, the temperature should be taken into consideration when detecting water Fe3+ pollution.


Biology Open ◽  
2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Hongjin Liu ◽  
Qian Song ◽  
Hui Zhen ◽  
Hongkuan Deng ◽  
Bosheng Zhao ◽  
...  

ABSTRACT MicroRNAs (miRNAs) are a class of evolutionarily conserved small non-coding RNAs that regulate gene expression at the translation level in cell growth, proliferation and differentiation. In addition, some types of miRNAs have been proven to be key modulators of both CNS development and plasticity, such as let-7, miR-9 and miR-124. In this research, we found miR-8b acts as an important regulator involved in brain and eyespot regeneration in Dugesia japonica. miR-8b was highly conserved among species and was abundantly expressed in central nervous system. Here, we detected the expression dynamics of miR-8b by qPCR during the head regeneration of D. japonica. Knockdown miR-8b by anti-MIRs method caused severe defects of eyes and CNS. Our study revealed the evolutionary conserved role of miR-8b in the planarian regeneration process, and further provided more research ideas and available information for planarian miRNAs.


Biologia ◽  
2013 ◽  
Vol 68 (2) ◽  
Author(s):  
Guang-Wen Chen ◽  
Ke-Xue Ma ◽  
De-Zeng Liu

AbstractThe aims of this work are to provide some properties of alkaline phosphatase (ALP) in the planarian Dugesia japonica and detect its activity in response to different stressors, as well as to introduce renatured SDS-PAGE to study enzyme activity in planarians. Our results indicate that ALPs in planarians are mainly membrane-bound form, identified as three mainly enzyme-bands (approximately MW 260 kD, 180 kD, 160 kD, respectively). Under our experimental conditions, ALPs activity had no apparent changes in response to low concentration of Hg2+ (25 μg L−1) and Pb2+ (125 μg L−1, 250 μg L−1) exposure, but were severely inhibited in response to high concentration of Hg2+ (50 μg L−1, 150 μg L−1, 300 μg L−1) and Pb2+ (500 μg L−1, 1000 μg L−1) exposure. Mild heat shock (25°C for 2 days) elevated ALP activity, but severely heat shock (25°C for 2 days, followed by 30°C for 2 days and 32°C for 2 days) inactivated ALP activity. Interestingly, ALP and other cytosolic phosphatases (MW from ∼45 kD to ∼60 kD) activity increased noticeably during the early stage of planarians regeneration, which may be involved in cell proliferation and differentiation. Contrary to regeneration, prolonged starvation suppressed ALP activity. The above findings provide valuable information about the role of ALP in planarian regeneration and for its use as an indicator in ecotoxicology.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3726
Author(s):  
Anna Kałuża ◽  
Justyna Szczykutowicz ◽  
Mirosława Ferens-Sieczkowska

Prostate cancer is the second most commonly diagnosed cancer among men. Alterations in protein glycosylation are confirmed to be a reliable hallmark of cancer. Prostate-specific antigen is the biomarker that is used most frequently for prostate cancer detection, although its lack of sensitivity and specificity results in many unnecessary biopsies. A wide range of glycosylation alterations in prostate cancer cells, including increased sialylation and fucosylation, can modify protein function and play a crucial role in many important biological processes in cancer, including cell signalling, adhesion, migration, and cellular metabolism. In this review, we summarize studies evaluating the prostate cancer associated glycosylation related alterations in sialylation, mainly α2,3-sialylation, core fucosylation, branched N-glycans, LacdiNAc group and presence of truncated O-glycans (sTn, sT antigen). Finally, we discuss the great potential to make use of glycans as diagnostic and prognostic biomarkers for prostate cancer.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhonghong Cao ◽  
David Rosenkranz ◽  
Suge Wu ◽  
Hongjin Liu ◽  
Qiuxiang Pang ◽  
...  

Abstract Background Planarians reliably regenerate all body parts after injury, including a fully functional head and central nervous system. But until now, the expression dynamics and functional role of miRNAs and other small RNAs during the process of head regeneration are not well understood. Furthermore, little is known about the evolutionary conservation of the relevant small RNAs pathways, rendering it difficult to assess whether insights from planarians will apply to other taxa. Results In this study, we applied high throughput sequencing to identify miRNAs, tRNA fragments and piRNAs that are dynamically expressed during head regeneration in Dugesia japonica. We further show that knockdown of selected small RNAs, including three novel Dugesia-specific miRNAs, during head regeneration induces severe defects including abnormally small-sized eyes, cyclopia and complete absence of eyes. Conclusions Our findings suggest that a complex pool of small RNAs takes part in the process of head regeneration in Dugesia japonica and provide novel insights into global small RNA expression profiles and expression changes in response to head amputation. Our study reveals the evolutionary conserved role of miR-124 and brings further promising candidate small RNAs into play that might unveil new avenues for inducing restorative programs in non-regenerative organisms via small RNA mimics based therapies.


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Yong Shen ◽  
Thomas Etheridge ◽  
Eric Hsu ◽  
Shankar Kaushal

The regenerative ability of planarians depends largely on its complex signaling pathways. The Wnt pathway regulates the A/P polarity formation after regeneration, while the MAPK pathway plays a role in regeneration. This experiment uses various drugs to disrupt the aforementioned pathways. Imatinib targets the RTKs, which play a role in the Wnt pathway. PZQ is expected to affect the Wnt noncanonical calcium pathway. EHT 1864 inhibits Rac1, a GTPase involved in the noncanonical PCP pathway. Finally, U0126 disrupts the MAPK pathway whose activity induces blastemic cell differentiation. After drug treatment, abnormal planarian regeneration is expected. The drug assays showed that while both Imatinib and PZQ have no effect on planarian regeneration, EHT 1864 under high concentration has a potent effect on the viability of planarians during regeneration. Furthermore, U0126 caused cyclopia in planarians under high concentrations. These observations suggest that the RTKs play a limited role in planarian regeneration, Rac1 plays a greater role than just A/P determination during regeneration, and that U0126 affects eye and head regeneration. Our findings also show an inconsistency with another research group’s study regarding the effects of PZQ on planarian polarity formation.  L’abilité regénérative des planaires dépend largement sur la complexité des ses voies de signalisation. La voie des Wnt contrôle la formation de la polarité des potentiels d’action après la regénération, alors que la voie de la MAPK joue un rôle dans la regénération. L’imatinib cible les RTK, eux-mêmes jouant un rôle dans la voie des Wnt. Praziquantel est attendu d’affecter la voie de calcium non canonique des Wnt. L’EHT 1864 inhibe la Rac1, un GTPase impliqué dans la voie non canonique du PCP. Finalement, U0126 perturbe la voie de la MAPK, l’activité de laquelle induit la différentiation des cellules souches blastémiques. Après traitement avec de la drogue, de la regénération anormale des planaires est attendue. Les essais des drogues ont démontré que, bien que Imatinib et PZQ n’ont pas d’effets sur la regénération des planaires, l’EHT 1864 en haute concentration a un effet potent sur la viabilité des planaires durant la regénération. De plus, l’U0126 a causé la cyclopie chez les planaires en haute concentration. Ces observations suggère que les RTK jouent un rôle limité dans la regénération de planaires, la Rac1 joue un rôle plus important que simplement déterminer des potentiels d’action durant la regénération et l’U0126 affecte les regénérations des yeux et de la tête. Nos découvertes indiquent aussi des incohérences avec une étude par un autre groupe au sujet des effets du PZQ sur la formation polaire des planaires.


Author(s):  
Hanxue Zheng ◽  
Hongbo Liu ◽  
Qian Xu ◽  
Wenjun Wang ◽  
Linfeng Li ◽  
...  

Phosphatidylinositol 3-kinase (PI3K) signaling plays a central role in various biological processes, and its abnormality leads to a broad spectrum of human diseases, such as cancer, fibrosis, and immunological disorders. However, the mechanisms by which PI3K signaling regulates the behavior of stem cells during regeneration are poorly understood. Planarian flatworms possess abundant adult stem cells (called neoblasts) allowing them to develop remarkable regenerative capabilities, thus the animals represent an ideal model for studying stem cells and regenerative medicine in vivo. In this study, the spatiotemporal expression pattern of Djpi3k, a PI3K ortholog in the planarian Dugesia japonica, was investigated and suggests its potential role in wound response and tissue regeneration. A loss-of-function study was conducted using small molecules and RNA interference technique, providing evidence that PI3K signaling is required for blastema regrowth and cilia maintenance during planarian regeneration and homeostasis. Interestingly, the mitotic and apoptotic responses to amputation are substantially abated in PI3K inhibitor-treated regenerating animals, while knockdown of Djpi3k alleviates the mitotic response and postpones the peak of apoptotic cell death, which may contribute to the varying degrees of regenerative defects induced by the pharmacological and genetic approaches. These observations reveal novel roles for PI3K signaling in the regulation of the cellular responses to amputation during planarian regeneration and provide insights for investigating the disease-related genes in the regeneration-competent organism in vivo.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Daša Zupančič ◽  
Mateja Erdani Kreft ◽  
Igor Sterle ◽  
Rok Romih

Lectin histochemistry (LHC) and immunohistochemistry (IHC), which demonstrate the composition and localisation of sugar residues and proteins in cell membranes, respectively, are generally used separately. Using these two methods, we previously demonstrated that malignant transformation of urothelial cells results in the alterations of protein glycosylation and reduced expression of urothelium-specific integral membrane proteins uroplakins (UPs). However, the correlation between these changes was not studied yet. To evaluate this correlation, we developed innovative method, which we named combined lectin- and immuno- histochemistry (CLIH). We used human biopsies of 6 normal urothelia and 9 papillary urothelial carcinomas, i.e. 3 papillary urothelial neoplasms of low malignant potential (PUNLMP), 3 non-invasive papillary urothelial carcinomas of low grade (pTa, l.g.), and 3 invasive papillary urothelial carcinomas of high grade (pT1, h.g.). We tested five different protocols (numbered 1-5) of CLIH on paraffin and cryo-semithin sections and compared them with LHC and IHC performed separately. Additionally, we carried out western and lectin blotting with antibodies against UPs and lectins Amaranthus caudatus agglutinin (ACA), Datura stramonium agglutinin (DSA), and jacalin, respectively. We showed that incubation with primary antibodies first, followed by the mixture of secondary antibodies and lectins is the most efficient CLIH method (protocol number 5). Additionally, 300 nm thick cryo-semithin sections enabled better resolution of co-localisation between sugar residues and proteins than 5 µm thick paraffin sections. In the normal urothelium, CLIH showed co-localisation of lectins ACA and jacalin with UPs in the apical plasma membrane (PM) of superficial umbrella cells. In papillary urothelial carcinomas, all three lectins (ACA, DSA and jacalin) labelled regions of apical PM, where they occasionally co-localised with UPs. Western and lectin blotting confirmed the differences between normal urothelium and papillary urothelial carcinomas. Our results show that CLIH, when used with various sets of lectins and antigens, is a useful, quick, and reliable method that could be applied for basic cell biology research as well as detailed subtyping of human urothelial carcinomas.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Ming Li ◽  
Yaqiang Bai ◽  
Jiaorui Zhou ◽  
Wei Huang ◽  
Jingyu Yan ◽  
...  

ABSTRACT The maternal milk glycobiome is crucial for shaping the gut microbiota of infants. Although high core fucosylation catalyzed by fucosyltransferase 8 (Fut8) is a general feature of human milk glycoproteins, its role in the formation of a healthy microbiota has not been evaluated. In this study, we found that the core-fucosylated N-glycans in milk of Chinese mothers selectively promoted the colonization of specific gut microbial groups, such as Bifidobacterium spp. and Lactobacillus spp. in their breast-fed infants during lactation. Compared with Fut8+/+ (WT) mouse-fed neonates, the offspring fed by Fut8+/− maternal mice had a distinct gut microbial profile, which was featured by a significant reduction of Lactobacillus spp., Bacteroides spp., and Bifidobacterium spp. and increased abundance of members of the Lachnospiraceae NK4A136 group and Akkermansia spp. Moreover, these offspring mice showed a lower proportion of splenic CD19+ CD69+ B lymphocytes and attenuated humoral immune responses upon ovalbumin (OVA) immunization. In vitro studies demonstrated that the chemically synthesized core-fucosylated oligosaccharides possessed the ability to promote the growth of tested Bifidobacterium and Lactobacillus strains in minimal medium. The resulting L-fucose metabolites, lactate and 1,2-propanediol, could promote the activation of B cells via the B cell receptor (BCR)-mediated signaling pathway. IMPORTANCE This study provides novel evidence for the critical role of maternal milk protein glycosylation in shaping early-life gut microbiota and promoting B cell activation of neonates. The special core-fucosylated oligosaccharides might be promising prebiotics for the personalized nutrition of infants.


Sign in / Sign up

Export Citation Format

Share Document