scholarly journals Novel Functional Assay for Spindle-Assembly Checkpoint by Cyclin-Dependent Kinase Activity to Predict Taxane Chemosensitivity in Breast Tumor Patient

2013 ◽  
Vol 4 (9) ◽  
pp. 697-702 ◽  
Author(s):  
Yasuhiro Torikoshi ◽  
Keigo Gohda ◽  
Michelle L. Davis ◽  
W. Fraser Symmans ◽  
Lajos Pusztai ◽  
...  

2018 ◽  
Vol 131 (7) ◽  
pp. jcs191353 ◽  
Author(s):  
Thibault Courtheoux ◽  
Alghassimou Diallo ◽  
Arun Prasath Damodaran ◽  
David Reboutier ◽  
Erwan Watrin ◽  
...  




2010 ◽  
Vol 190 (4) ◽  
pp. 501-509 ◽  
Author(s):  
Barbara Di Fiore ◽  
Jonathon Pines

The anaphase-promoting complex/cyclosome (APC/C) is the ubiquitin ligase essential to mitosis, which ensures that specific proteins are degraded at specific times to control the order of mitotic events. The APC/C coactivator, Cdc20, is targeted by the spindle assembly checkpoint (SAC) to restrict APC/C activity until metaphase, yet early substrates, such as cyclin A, are degraded in the presence of the active checkpoint. Cdc20 and the cyclin-dependent kinase cofactor, Cks, are required for cyclin A destruction, but how they enable checkpoint-resistant destruction has not been elucidated. In this study, we answer this problem: we show that the N terminus of cyclin A binds directly to Cdc20 and with sufficient affinity that it can outcompete the SAC proteins. Subsequently, the Cks protein is necessary and sufficient to promote cyclin A degradation in the presence of an active checkpoint by binding cyclin A–Cdc20 to the APC/C.



2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Ilma Amalina ◽  
Ailsa Bennett ◽  
Helen Whalley ◽  
David Perera ◽  
Joanne C. McGrail ◽  
...  

Bub1 is a serine/threonine kinase proposed to function centrally in mitotic chromosome alignment and the spindle assembly checkpoint (SAC); however, its role remains controversial. Although it is well documented that Bub1 phosphorylation of Histone 2A at T120 (H2ApT120) recruits Sgo1/2 to kinetochores, the requirement of its kinase activity for chromosome alignment and the SAC is debated. As small-molecule inhibitors are invaluable tools for investigating kinase function, we evaluated two potential Bub1 inhibitors: 2OH-BNPPI and BAY-320. After confirming that both inhibit Bub1 in vitro , we developed a cell-based assay for Bub1 inhibition. We overexpressed a fusion of Histone 2B and Bub1 kinase region, tethering it in proximity to H2A to generate a strong ectopic H2ApT120 signal along chromosome arms. Ectopic signal was effectively inhibited by BAY-320, but not 2OH-BNPP1 at concentrations tested. In addition, only BAY-320 was able to inhibit endogenous Bub1-mediated Sgo1 localization. Preliminary experiments using BAY-320 suggest a minor role for Bub1 kinase activity in chromosome alignment and the SAC; however, BAY-320 may exhibit off-target effects at the concentration required. Thus, 2OH-BNPP1 may not be an effective Bub1 inhibitor in cellulo , and while BAY-320 can inhibit Bub1 in cells, off-target effects highlight the need for improved Bub1 inhibitors.



2020 ◽  
Author(s):  
Ilma Amalina ◽  
Ailsa Bennett ◽  
Helen Whalley ◽  
David Perera ◽  
Joanne C. McGrail ◽  
...  

SummaryBub1 is a serine/threonine kinase proposed to function centrally in both mitotic chromosome alignment and the spindle assembly checkpoint (SAC), however its role remains controversial. Although it is well documented that Bub1 phosphorylation of Histone 2A at T120 (H2ApT120) recruits Sgo1/2 to kinetochores, the requirement of its kinase activity for chromosome alignment and the SAC is debated. As small-molecule inhibitors can be invaluable tools for investigation of kinase function, we decided to evaluate the relative potential of two agents (2OH-BNPPI and BAY-320) as Bub1 inhibitors. After confirming that both agents inhibit Bub1 in vitro, we developed a cell based-assay to specifically measure Bub1 inhibition in vivo. For this assay we overexpressed a fusion of Histone 2B and the Bub1 kinase region (Bub1C) tethering it in close proximity to H2A, which generated a strong ectopic H2ApT120 signal along chromosome arms. The ectopic signal generated from Bub1C activity was effectively inhibited by BAY-320, but not 2OH-BNPP1. In addition, only BAY-320 was able to inhibit endogenous Bub1-mediated Sgo1 localisation. Preliminary experiments using BAY-320 suggested a minor role for Bub1 kinase activity in chromosome alignment and the SAC, however results suggest that BAY-320 may exhibit off-target effects at the concentration required to demonstrate these outcomes. In conclusion, 2OH-BNPP1 may not be an effective Bub1 inhibitor in vivo, and while BAY-320 is able to inhibit Bub1 in vivo, the high concentrations required and potential for off-target effects highlight the ongoing need for improved Bub1 inhibitors.



2019 ◽  
Author(s):  
Marilia H Cordeiro ◽  
Richard J Smith ◽  
Adrian T Saurin

AbstractLocal phosphatase regulation is critical for determining when phosphorylation signals are activated or deactivated. A typical example is the spindle assembly checkpoint (SAC) during mitosis, which regulates kinetochore PP1 and PP2A-B56 activities to switch-off signalling events at the correct time. In this case, kinetochore phosphatase activation dephosphorylates MELT motifs on KNL1 to remove SAC proteins, including the BUB complex. We show here that, surprisingly, neither PP1 or PP2A are required to dephosphorylate the MELT motifs. Instead, they remove polo-like kinase 1 (PLK1) from the BUB complex, which can otherwise maintain MELT phosphorylation in an autocatalytic manner. This is their principle role in the SAC, because both phosphatases become redundant if PLK1 is inhibited or BUB-PLK1 interaction is prevented. Therefore, phosphatase regulation is critical for the SAC, but primarily to restrain and extinguish autonomous kinase activity. We propose that these circuits have evolved to generate a semi-autonomous SAC signal that can be synchronously silenced following kinetochore-microtubule tension.



2009 ◽  
Vol 187 (5) ◽  
pp. 597-605 ◽  
Author(s):  
Zohra Rahmani ◽  
Mary E. Gagou ◽  
Christophe Lefebvre ◽  
Doruk Emre ◽  
Roger E. Karess

BubR1 performs several roles during mitosis, affecting the spindle assembly checkpoint (SAC), mitotic timing, and spindle function, but the interdependence of these functions is unclear. We have analyzed in Drosophila melanogaster the mitotic phenotypes of kinase-dead (KD) BubR1 and BubR1 lacking the N-terminal KEN box. bubR1-KD individuals have a robust SAC but abnormal spindles with thin kinetochore fibers, suggesting that the kinase activity modulates microtubule capture and/or dynamics but is relatively dispensable for SAC function. In contrast, bubR1-KEN flies have normal spindles but no SAC. Nevertheless, mitotic timing is normal as long as Mad2 is present. Thus, the SAC, timer, and spindle functions of BubR1 are substantially separable. Timing is shorter in bubR1-KEN mad2 double mutants, yet in these flies, lacking both critical SAC components, chromosomes still segregate accurately, reconfirming that in Drosophila, reliable mitosis does not need the SAC.



Biology Open ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Aisling O'Connor ◽  
Stefano Maffini ◽  
Michael D. Rainey ◽  
Agnieszka Kaczmarczyk ◽  
David Gaboriau ◽  
...  


PLoS Genetics ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. e1009592
Author(s):  
Michael Bokros ◽  
Delaney Sherwin ◽  
Marie-Helene Kabbaj ◽  
Yanchang Wang

The spindle assembly checkpoint (SAC) prevents anaphase onset in response to chromosome attachment defects, and SAC silencing is essential for anaphase onset. Following anaphase onset, activated Cdc14 phosphatase dephosphorylates the substrates of cyclin-dependent kinase to facilitate anaphase progression and mitotic exit. In budding yeast, Cdc14 dephosphorylates Fin1, a regulatory subunit of protein phosphatase 1 (PP1), to enable kinetochore localization of Fin1-PP1. We previously showed that kinetochore-localized Fin1-PP1 promotes the removal of the SAC protein Bub1 from the kinetochore during anaphase. We report here that Fin1-PP1 also promotes kinetochore removal of Bub3, the Bub1 partner, but has no effect on another SAC protein Mad1. Moreover, the kinetochore localization of Bub1-Bub3 during anaphase requires Aurora B/Ipl1 kinase activity. We further showed that Fin1-PP1 facilitates the dephosphorylation of kinetochore protein Ndc80, a known Ipl1 substrate. This dephosphorylation reduces kinetochore association of Bub1-Bub3 during anaphase. In addition, we found that untimely Ndc80 dephosphorylation causes viability loss in response to tensionless chromosome attachments. These results suggest that timely localization of Fin1-PP1 to the kinetochore controls the functional window of SAC and is therefore critical for faithful chromosome segregation.



eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Ahmed Rattani ◽  
Magda Wolna ◽  
Mickael Ploquin ◽  
Wolfgang Helmhart ◽  
Seamus Morrone ◽  
...  

Accurate chromosome segregation depends on coordination between cohesion resolution and kinetochore-microtubule interactions (K-fibers), a process regulated by the spindle assembly checkpoint (SAC). How these diverse processes are coordinated remains unclear. We show that in mammalian oocytes Shugoshin-like protein 2 (Sgol2) in addition to protecting cohesin, plays an important role in turning off the SAC, in promoting the congression and bi-orientation of bivalents on meiosis I spindles, in facilitating formation of K-fibers and in limiting bivalent stretching. Sgol2’s ability to protect cohesin depends on its interaction with PP2A, as is its ability to silence the SAC, with the latter being mediated by direct binding to Mad2. In contrast, its effect on bivalent stretching and K-fiber formation is independent of PP2A and mediated by recruitment of MCAK and inhibition of Aurora C kinase activity respectively. By virtue of its multiple interactions, Sgol2 links many of the processes essential for faithful chromosome segregation.



Sign in / Sign up

Export Citation Format

Share Document