scholarly journals Non-invasive monitoring of in vivo hydrogel degradation and cartilage regeneration by multiparametric MR imaging

Theranostics ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 1146-1158 ◽  
Author(s):  
Zelong Chen ◽  
Chenggong Yan ◽  
Shina Yan ◽  
Qin Liu ◽  
Meirong Hou ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Min Li ◽  
Pei Li ◽  
Haijun Teng ◽  
Dehong Fan ◽  
...  

Patients with bone and cartilage defects due to infection, tumors, and trauma are quite common. Repairing bone and cartilage defects is thus a major problem for clinicians. Autologous and artificial bone transplantations are associated with many challenges, such as limited materials and immune rejection. Bone and cartilage regeneration has become a popular research topic. Inorganic polyphosphate (polyP) is a widely occurring biopolymer with high-energy phosphoanhydride bonds that exists in organisms from bacteria to mammals. Much data indicate that polyP acts as a regulator of gene expression in bone and cartilage tissues and exerts morphogenetic effects on cells involved in bone and cartilage formation. Exposure of these cells to polyP leads to the increase of cytokines that promote the differentiation of mesenchymal stem cells into osteoblasts, accelerates the osteoblast mineralization process, and inhibits the differentiation of osteoclast precursors to functionally active osteoclasts. PolyP-based materials have been widely reported in in vivo and in vitro studies. This paper reviews the current cellular mechanisms and material applications of polyP in bone and cartilage regeneration.


1999 ◽  
Vol 81 (3) ◽  
pp. 520-527 ◽  
Author(s):  
G J Czarnota ◽  
M C Kolios ◽  
J Abraham ◽  
M Portnoy ◽  
F P Ottensmeyer ◽  
...  

2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Silvia Santis

AbstractDiffusion-based MR imaging is the only non-invasive method for characterising the microstructural organization of brain tissue in vivo. Diffusion tensor MRI (DT-MRI) is currently routinely used in both research and clinical practice. However, other diffusion approaches are gaining more and more popularity and an increasing number of researchers express interest in using them concomitantly with DT-MRI. While non tensor-based methods hold great promises for increasing the specificity of diffusion MR imaging, including them in the experimental routine inevitably leads to longer experimental times. In most cases, this may preclude the translation of the full protocol to clinical practice, especially when these methods are to be used with subjects that are not compatible with long scanning sessions (e.g., with elderly and pediatric subjects who have difficulties in maintaining a fixed head position during a long imaging session).The aim of this review is to guide the end-users on obtaining the maximum from the experimental time allocated to collecting diffusion MRI data. This is done by: (i) briefly reviewing non tensor-based approaches; (ii) reviewing the optimal protocols for both tensor and non tensor-based imaging; and (iii) drawing the conclusions for different experimental times.


Author(s):  
Richard M. Lovering ◽  
Joseph A. Roche ◽  
Mariah H. Goodall ◽  
Brett B. Clark ◽  
Alan McMillan

2020 ◽  
Vol 22 (5) ◽  
pp. 1244-1254
Author(s):  
M. Mousavinejad ◽  
S. Skidmore ◽  
F. G. Barone ◽  
P. Tyers ◽  
V. Pisupati ◽  
...  

Abstract Purpose Human pluripotent stem cell (hPSC)-derived dopaminergic neuron progenitor cells (DAPCs) are a potential therapy for Parkinson’s disease (PD). However, their intracranial administration raises safety concerns including uncontrolled proliferation, migration and inflammation. Here, we apply a bimodal imaging approach to investigate the fate of DAPC transplants in the rat striatum. Procedures DAPCs co-expressing luciferase and ZsGreen or labelled with micron-sized particles of iron oxide (MPIOs) were transplanted in the striatum of RNU rats (n = 6 per group). DAPCs were tracked in vivo using bioluminescence and magnetic resonance (MR) imaging modalities. Results Transgene silencing in differentiating DAPCs accompanied with signal attenuation due to animal growth rendered the bioluminescence undetectable by week 2 post intrastriatal transplantation. However, MR imaging of MPIO-labelled DAPCs showed that transplanted cells remained at the site of injection for over 120 days. Post-mortem histological analysis of DAPC transplants demonstrated that labelling with either luciferase/ZsGreen or MPIOs did not affect the ability of cells to differentiate into mature dopaminergic neurons. Importantly, labelled cells did not elicit increased glial reactivity compared to non-labelled cells. Conclusions In summary, our findings support the transplantation of hPSC-derived DAPCs as a safe treatment for PD.


Sign in / Sign up

Export Citation Format

Share Document