scholarly journals Marine Molluscs as Indicators of Environmental Change in Glaciated North America and Greenland During the Last 18 000 Years

2007 ◽  
Vol 50 (2) ◽  
pp. 125-184 ◽  
Author(s):  
Arthur S. Dyke ◽  
Janis E. Dale ◽  
Roger N. McNeely

ABSTRACTDated mollusc collections are classified in assemblages to map paleo-faunistic zones. Hiatella arctica and Mya truncata account for almost half the records and comprise a restricted arctic assemblage. Arctic assemblages comprise 70% and arctic-dominated assemblages 80% of the database. Fifteen species dominate but 170 taxa are recorded. At last glacial maximum, the arctic zone extended from the Arctic Ocean to the Grand Banks. The boreal zone in the western Atlantic was compressed. The subarctic zone, which today dominates eastern Canada, was small. The boreal zone was extensive in the eastern Pacific where subarctic and arctic zones were compressed. Zones shifted northward during deglaciation and the arctic zone diversified when Bering Strait submerged 10.5-10.3 ka BP. Western Arctic molluscs during Younger Dryas time indicate shallow waters warmer than present. Major North Atlantic currents were established 9.5-9.0 ka BP. The subarctic zone extended to the head of Baffin Bay and a boreal zone became established in West Greenland 9-8 ka BP, with intensive changes about 8.5 ka BP. We relate the latter to the reduction of Mackenzie River discharge and in sea ice export to the North Atlantic as Laurentide ice withdrew from Mackenzie headwaters. The extended subarctic zone in Baffin Bay persisted until 3 ka BP and then retreated about 1000 km on the Canadian side. Boreal-subarctic molluscs in the Gulf of St. Lawrence before 9.5 ka BP derived from the glacial refugium. High boreal-subarctic molluscs farther north probably migrated from Europe. We postulate that the Labrador Current acts as a one-way valve for mollusc migrations at glacial-interglacial scales.

2021 ◽  
Author(s):  
Julia Weiffenbach ◽  
Michiel Baatsen ◽  
Anna von der Heydt

<p>The mid-Pliocene climate is the most recent geological period with a greenhouse gas concentration of approximately 400 ppmv, similar to the present day. Proxy reconstructions indicate enhanced warming in the high North Atlantic in the mid-Pliocene, which has been suggested to be a response to a stronger Atlantic Meridional Overturning Circulation (AMOC). PlioMIP2 ensemble results show a stronger AMOC and simulated North Atlantic sea surface temperatures (SSTs) match reconstructions better than PlioMIP1. A major difference between PlioMIP1 and PlioMIP2 is the closure of the Bering Strait and Canadian Archipelago in the Pliocene. Previous studies have shown that closure of these Arctic gateways leads to an enhanced AMOC due to altered freshwater fluxes in the Arctic.</p><p>Analysis of our Community Earth System Model (CESM1) simulations shows that the simulated increase in North Atlantic SSTs and strengthened AMOC in the Pliocene is a result of Pliocene boundary conditions rather than CO<sub>2</sub> concentration increase. Here we compare results from two runs with pre-industrial boundary conditions and 280 and 560 ppmv CO<sub>2</sub> concentrations and three runs with PlioMIP2 boundary conditions and 280, 400 and 560 ppmv CO<sub>2</sub> concentrations. Results show a 10-15% stronger AMOC in the Pliocene simulations as well as enhanced warming and saltening of the North Atlantic sea surface. While there is a stronger AMOC, the Atlantic northward ocean heat transport (OHT) in the Pliocene simulations only increases 0-3% with respect to the pre-industrial. Analysis indicates there is an altered relationship between the AMOC and OHT in the Pliocene, pointing to fundamentally different behavior of the AMOC in the Pliocene simulations. This is supported by a specific spatial pattern of deep water formation (DWF) areas in the Pliocene simulations that is significantly different from that of the pre-industrial. In the Pliocene simulations, DWF areas adjacent to south Greenland disappear and new DWF areas appear further southwards in the Labrador Sea off the coast of Newfounland. These results indicate that insight into the effect of the palaeogeographic boundary conditions is crucial to understanding the Pliocene climate and its potential as a geological equivalent to a future greenhouse climate.</p>


Paleobiology ◽  
1991 ◽  
Vol 17 (3) ◽  
pp. 281-307 ◽  
Author(s):  
Geerat J. Vermeij

When the Bering Strait between Alaska and Siberia opened about 3.5 Ma during the early Pliocene, cool-temperate and polar marine species were able to move between the North Pacific and Arctic-Atlantic basins. In order to investigate the extent, pattern, and dynamics of this trans-Arctic interchange, I reviewed the Recent and fossil distributions of post-Miocene shell-bearing Mollusca in each of five northern regions: (1) the northeastern Atlantic (Lofoten Islands to the eastern entrance of the English Channel and the northern entrance of the Irish Sea), (2) northwestern Atlantic (southern Labrador to Cape Cod), (3) northeastern Pacific (Bering Strait to Puget Sound), (4) northwestern Pacific (Bering Strait to Hokkaido and the northern Sea of Japan), and (5) Arctic (areas north of the Lofoten Islands, southern Labrador, and Bering Strait).I have identified 295 molluscan species that either took part in the interchange or are descended from taxa that did. Of these, 261 are of Pacific origin, whereas only 34 are of Arctic-Atlantic origin. Various analyses of the pattern of invasion confirm earlier work, indicating that there is a strong bias in favor of species with a Pacific origin.A geographical analysis of invaders implies that, although trans-Arctic interchange contributed to a homogenization of the biotas of the northern oceans, significant barriers to dispersal exist and have existed for trans-Arctic invaders within the Arctic-Atlantic basin. Nevertheless, trans-Arctic invaders in the Atlantic have significantly broader geographical ranges than do taxa with a pre-Pliocene history in the Atlantic.Among the possible explanations for the asymmetry of trans-Arctic invasion, two hypotheses were explicitly tested. The null hypothesis of diversity states that the number of invaders from a biota is proportional to the total number of species in that biota. Estimates of Recent molluscan diversity show that the North Pacific is 1.5 to 2.7 times richer than is the Arctic-Atlantic, depending on how faunistic comparisons are made. This difference in diversity is much smaller than is the asymmetry of trans-Arctic invasion in favor of Pacific species. Rough estimates of regional Pliocene diversity suggest that differences in diversity during the Pliocene were smaller than they are in the Recent fauna. The null hypothesis was therefore rejected.The hypothesis of ecological opportunity states that the number of invaders to a region is proportional to the number of species that became extinct there. The post-Early Pliocene magnitude of extinction was lowest in the North Pacific, intermediate in the northeastern Atlantic, and probably highest in the northwestern Atlantic. The absolute number and faunistic importance of post-Early Pliocene invaders (including trans-Arctic species, as well as taxa previously confined to warm-temperate waters and western Atlantic species that previously occurred only in the eastern Atlantic) was lowest in the North Pacific, intermediate in the northeastern Atlantic, and highest in the northwestern Atlantic. Further support for the hypothesis of ecological opportunity comes from the finding that hard-bottom communities, especially those in the northwestern Atlantic, show a higher representation of molluscan species of Pacific origin, and are likely to have been more affected by climatic events, than were communities on unconsolidated sandy and muddy bottoms. Support for the hypothesis does not rule out other explanations for the observed asymmetry of trans-Arctic invasion.A preliminary study of species-level evolution within lineages of trans-Arctic invaders indicates that anagenesis and cladogenesis have been more frequent among groups with Pacific origins than among those with Atlantic origins, and that the regions within the Arctic-Atlantic basin with the highest absolute number and faunistic representation of invaders (western Atlantic and Arctic) are the regions in which speciation has been least common among the invaders. The asymmetry of invasion is therefore distinct from the asymmetry of species-level evolution of invaders in the various northern marine regions.


2008 ◽  
Vol 21 (10) ◽  
pp. 2239-2258 ◽  
Author(s):  
Aixue Hu ◽  
Bette L. Otto-Bliesner ◽  
Gerald A. Meehl ◽  
Weiqing Han ◽  
Carrie Morrill ◽  
...  

Abstract Responses of the thermohaline circulation (THC) to freshwater forcing (hosing) in the subpolar North Atlantic Ocean under present-day and the last glacial maximum (LGM) conditions are investigated using the National Center for Atmospheric Research Community Climate System Model versions 2 and 3. Three sets of simulations are analyzed, with each set including a control run and a freshwater hosing run. The first two sets are under present-day conditions with an open and closed Bering Strait. The third one is under LGM conditions, which has a closed Bering Strait. Results show that the THC nearly collapses in all three hosing runs when the freshwater forcing is turned on. The full recovery of the THC, however, is at least a century earlier in the open Bering Strait run than the closed Bering Strait and LGM runs. This is because the excessive freshwater is diverged almost equally toward north and south from the subpolar North Atlantic when the Bering Strait is open. A significant portion of the freshwater flowing northward into the Arctic exits into the North Pacific via a reversed Bering Strait Throughflow, which accelerates the THC recovery. When the Bering Strait is closed, this Arctic to Pacific transport is absent and freshwater can only be removed through the southern end of the North Atlantic. Together with the surface freshwater excess due to precipitation, evaporation, river runoff, and melting ice in the closed Bering Strait experiments after the hosing, the removal of the excessive freshwater takes longer, and this slows the recovery of the THC. Although the background conditions are quite different between the present-day closed Bering Strait run and the LGM run, the THC responds to the freshwater forcing added in the North Atlantic in a very similar manner.


2009 ◽  
Vol 22 (6) ◽  
pp. 1424-1445 ◽  
Author(s):  
Yuko M. Okumura ◽  
Clara Deser ◽  
Aixue Hu ◽  
Axel Timmermann ◽  
Shang-Ping Xie

Abstract Sudden changes of the Atlantic meridional overturning circulation (AMOC) are believed to have caused large, abrupt climate changes over many parts of the globe during the last glacial and deglacial period. This study investigates the mechanisms by which a large freshwater input to the subarctic North Atlantic and an attendant rapid weakening of the AMOC influence North Pacific climate by analyzing four different ocean–atmosphere coupled general circulation models (GCMs) under present-day or preindustrial boundary conditions. When the coupled GCMs are forced with a 1-Sv (Sv ≡ 106 m3 s−1) freshwater flux anomaly in the subarctic North Atlantic, the AMOC nearly shuts down and the North Atlantic cools significantly. The South Atlantic warms slightly, shifting the Atlantic intertropical convergence zone southward. In addition to this Atlantic ocean–atmosphere response, all of the models exhibit cooling of the North Pacific, especially along the oceanic frontal zone, consistent with paleoclimate reconstructions. The models also show deepening of the wintertime Aleutian low. Detailed analysis of one coupled GCM identifies both oceanic and atmospheric pathways from the Atlantic to the North Pacific. The oceanic teleconnection contributes a large part of the North Pacific cooling: the freshwater input to the North Atlantic raises sea level in the Arctic Ocean and reverses the Bering Strait throughflow, transporting colder, fresher water from the Arctic Ocean into the North Pacific. When the Bering Strait is closed, the cooling is greatly reduced, while the Aleutian low response is enhanced. Tropical SST anomalies in both the Atlantic and Pacific are found to be important for the equivalent barotropic response of the Aleutian low during boreal winter. The atmospheric bridge from the tropical North Atlantic is particularly important and quite sensitive to the mean state, which is poorly simulated in many coupled GCMs. The enhanced Aleutian low, in turn, cools the North Pacific by increasing surface heat fluxes and southward Ekman transport. The closure of the Bering Strait during the last glacial period suggests that the atmospheric bridge from the tropics and air–sea interaction in the North Pacific played a crucial role in the AMOC–North Pacific teleconnection.


2021 ◽  
Author(s):  
Ryan Love ◽  
Heather Andres ◽  
Alan Condron ◽  
Lev Tarasov

Abstract. Freshwater, in the form of glacial runoff, is hypothesized to play a critical role in centennial to millennial scale climate variability such as the Younger Dryas and Dansgaard-Oeschger Events. Indeed, freshwater injection/hosing experiments with climate models have long shown that freshwater has the capability of generating such abrupt climate transitions. However, the relationship between freshwater and abrupt climate transitions is not straightforward. Large-scale glacial runoff events, such as Meltwater Pulse 1A, are not always temporally proximal to subsequent large-scale cooling. As well, the typical design of hosing experiments tends to artificially amplify the climate response. This study explores the impact that limitations in the representation of runoff in conventional hosing simulations has on our understanding of this relationship and addresses the more fundamental question of where coastally released freshwater is transported when it reaches the ocean. We focus particularly on the prior use of excessive freshwater volumes (often by a factor of 5) and present-day (rather than paleo) ocean gateways, as well as the injection of freshwater directly over sites of deep-water formation (DWF) rather than at runoff locations. We track the routing of glaciologically-constrained freshwater volumes from four different plausible injection locations in a suite of eddy-permitting glacial ocean simulations using MITGCM under both open and closed Bering Strait conditions. Restricting freshwater forcing values to realistic ranges results in less spreading of freshwater across the North Atlantic and indicates that the response of DWF depends strongly on the geographical location of meltwater input. In particular, freshwater released into the Gulf of Mexico has little impact on DWF regions as a result of turbulent mixing by the Gulf Stream. In contrast, freshwater released from the Eurasian Ice sheet or initially into the Arctic is found to have the largest impact on DWF in the North Atlantic and GIN seas. Additional experiments show that when the Bering Strait is open, much like present-day, the Mackenzie River source exhibits twice as much freshening of the Labrador sea as a closed Bering Strait. Finally, our results illustrate that applying a freshwater hosing directly into the North Atlantic with even realistic freshwater amounts still over-estimates the effect of terrestrial runoff on ocean circulation.


2020 ◽  
Author(s):  
Claude Hillaire-Marcel ◽  
Anne de Vernal ◽  
Yanguang Liu

<p>The Arctic Ocean is a major player in the climate system of the Northern Hemisphere due to its role vs albedo, atmospheric pressure regimes, and thermohaline circulation. It shows large amplitude variability from millennial, to decadal and seasonal time scales. At millennial time scales, two drastically distinct regimes prevail primarily in relation with ocean volume and sea level (SL) changes: A modern like system, with a high SL when the Arctic Ocean shelves are submerged and Bering Strait is opened vs a glacial one, with a low SL, when shelves are emerged and partly glaciated and Bering Strait is closed. In the modern system, large submerged shelves result in high productivity, high sea-ice production rates and sea ice-rafting deposition in the Central Arctic. Moreover, a fully open Bering Strait, with SL at the present elevation, contributes about 40% of the freshwater budget of the Arctic Ocean (Woodgate & Aagaard, 2005, doi:10.1029/2004GL021747), and supports Si fluxes of about 20 kmol.s<sup>-1</sup> towards the Western Arctic (Torres-Valdés et al., 2013, doi:10.1002/jgrc.20063), thus impacting primary productivity. Under low SL conditions, the Arctic Ocean is linked exclusively to the North Atlantic, through practically a single gateway, that of Fram Strait. Sedimentation in the Central Arctic is then dominated ice-rafting deposition from icebergs, thus controlled by streaming and calving processes along surrounding ice sheets. Due to its shallowness (< 50 m), the Bering Strait gateway becomes effective at a very late stage of glacial to interglacial transitions but closes early during reverse climate trends. Sedimentary records from shelves North of Strait may provide information on the status of the gateway, so far, for the present interglacial. Clay minerals in cores from the northern Alaskan shelf (Ortiz et al., 2009, doi:10.1016/j.gloplacha.2009.03.020) and micropaleontological tracers from the Chukchi Sea southern shelf (present study) can be used to document the status of the gateway. Here, North Pacific microfossils transported by currents through the gateway demonstrate its full effectiveness at ca 6 ka BP, well after the insolation maximum of the early Holocene but when SL had reached its maximum postglacial elevation, with significant impacts on Arctic Ocean salinity, sea-ice cover and productivity.. This out-of-phase behavior of the Arctic Ocean may have impacted the North Atlantic and Northern Hemisphere climate system, as the openings and closings of Bering Strait constitute critical tipping points on this system, off out of phase with other parameters controlling more globally the climate of the Northern Hemisphere.</p>


2016 ◽  
Author(s):  
Masanobu Yamamoto ◽  
Seung Il Nam ◽  
Leonid Polyak ◽  
Daisuke Kobayashi ◽  
Kenta Suzuki ◽  
...  

Abstract. The Beaufort Gyre (BG) and the Bering Strait inflow (BSI) are important elements of the Arctic Ocean circulation system and major controls on the distribution of Arctic sea ice. We report records of the quartz/feldspar and chlorite/illite ratios in two sediment cores from the northern Chukchi Sea providing insights into the long-term dynamics of the BG circulation and the BSI during the Holocene. The quartz/feldspar ratio, a proxy of the BG strength, gradually decreased during the Holocene, suggesting a long-term decline in the BG strength, consistent with orbitally-controlled decrease in summer insolation. We suppose that the BG rotation weakened as a result of increasing stability of sea-ice cover at the margins of the Canada Basin, driven by decreasing insolation. Millennial to multi-centennial variability in the quartz/feldspar ratio (the BG circulation) is consistent with fluctuations in solar irradiance, suggesting that solar activity affected the BG strength on these timescales. The BSI, approximated by the chlorite/illite record, shows intensified flow from the Bering Sea to the Arctic during the middle Holocene, which is attributed primarily to the effect of an overall weaker Aleutian Low. This middle Holocene strengthening of the BSI was coeval with intense subpolar gyre circulation in the North Atlantic. We propose that the BSI is linked with the North Atlantic circulation via an atmospheric teleconnection between the Aleutian and Icelandic Lows. A correspondence between the Holocene variability of the BSI and North Atlantic Drift suggests that this connection is involved in a mechanism muting salinity changes in the North Atlantic, and thereby stabilizing the Atlantic Meridional Overturning Circulation.


2020 ◽  
Vol 50 (7) ◽  
pp. 1853-1870
Author(s):  
Paola Cessi

AbstractIt is well established that the mean transport through Bering Strait is balanced by a sea level difference between the North Pacific and the Arctic Ocean, but no mechanism has been proposed to explain this sea level difference. It is argued that the sea level difference across Bering Strait, which geostrophically balances the northward throughflow, is associated with the sea level difference between the North Pacific and the North Atlantic/Arctic. In turn, the latter difference is caused by deeper middepth isopycnals in the Indo-Pacific than in the Atlantic, especially in the northern high latitudes because there is deep water formation in the Atlantic, but not in the Pacific. Because the depth of the middepth isopycnals is associated with the dynamics of the upper branch of the meridional overturning circulation (MOC), a model is formulated that quantitatively relates the sea level difference between the North Pacific and the Arctic/North Atlantic with the wind stress in the Antarctic Circumpolar region, since this forcing powers the MOC, and with the outcropping isopycnals shared between the Northern Hemisphere and the Antarctic circumpolar region, since this controls the location of deep water formation. This implies that if the sinking associated with the MOC were to occur in the North Pacific, rather than the North Atlantic, then the Bering Strait flow would reverse. These predictions, formalized in a theoretical box model, are confirmed by a series of numerical experiments in a simplified geometry of the World Ocean, forced by steady surface wind stress, temperature, and freshwater flux.


2019 ◽  
pp. 3-20
Author(s):  
V.N. Leksin

The impact on healthcare organization on the territory of Russian Arctic of unique natural and climatic, demographic, ethnic, settlement and professional factors of influencing the health of population, constantly or temporarily living on this territory is studied. The necessity is substantiated of various forms and resource provision with healthcare services such real and potential patients of Arctic medical institutions, as representatives of indigenous small peoples of the North, workers of mining and metallurgical industry, military personnel, sailors and shift workers. In this connection a correction of a number of All-Russian normative acts is proposed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rebecca Jackson ◽  
Anna Bang Kvorning ◽  
Audrey Limoges ◽  
Eleanor Georgiadis ◽  
Steffen M. Olsen ◽  
...  

AbstractBaffin Bay hosts the largest and most productive of the Arctic polynyas: the North Water (NOW). Despite its significance and active role in water mass formation, the history of the NOW beyond the observational era remains poorly known. We reconcile the previously unassessed relationship between long-term NOW dynamics and ocean conditions by applying a multiproxy approach to two marine sediment cores from the region that, together, span the Holocene. Declining influence of Atlantic Water in the NOW is coeval with regional records that indicate the inception of a strong and recurrent polynya from ~ 4400 yrs BP, in line with Neoglacial cooling. During warmer Holocene intervals such as the Roman Warm Period, a weaker NOW is evident, and its reduced capacity to influence bottom ocean conditions facilitated northward penetration of Atlantic Water. Future warming in the Arctic may have negative consequences for this vital biological oasis, with the potential knock-on effect of warm water penetration further north and intensified melt of the marine-terminating glaciers that flank the coast of northwest Greenland.


Sign in / Sign up

Export Citation Format

Share Document