Response/feedback of the Arctic Ocean in the Northern Hemisphere climate system: the sea-level joker

Author(s):  
Claude Hillaire-Marcel ◽  
Anne de Vernal ◽  
Yanguang Liu

<p>The Arctic Ocean is a major player in the climate system of the Northern Hemisphere due to its role vs albedo, atmospheric pressure regimes, and thermohaline circulation. It shows large amplitude variability from millennial, to decadal and seasonal time scales. At millennial time scales, two drastically distinct regimes prevail primarily in relation with ocean volume and sea level (SL) changes: A modern like system, with a high SL when the Arctic Ocean shelves are submerged and Bering Strait is opened vs a glacial one, with a low SL, when shelves are emerged and partly glaciated and Bering Strait is closed. In the modern system, large submerged shelves result in high productivity, high sea-ice production rates and sea ice-rafting deposition in the Central Arctic. Moreover, a fully open Bering Strait, with SL at the present elevation, contributes about 40% of the freshwater budget of the Arctic Ocean (Woodgate & Aagaard, 2005, doi:10.1029/2004GL021747), and supports Si fluxes of about 20 kmol.s<sup>-1</sup> towards the Western Arctic (Torres-Valdés et al., 2013, doi:10.1002/jgrc.20063), thus impacting primary productivity. Under low SL conditions, the Arctic Ocean is linked exclusively to the North Atlantic, through practically a single gateway, that of Fram Strait. Sedimentation in the Central Arctic is then dominated ice-rafting deposition from icebergs, thus controlled by streaming and calving processes along surrounding ice sheets. Due to its shallowness (< 50 m), the Bering Strait gateway becomes effective at a very late stage of glacial to interglacial transitions but closes early during reverse climate trends. Sedimentary records from shelves North of Strait may provide information on the status of the gateway, so far, for the present interglacial. Clay minerals in cores from the northern Alaskan shelf (Ortiz et al., 2009, doi:10.1016/j.gloplacha.2009.03.020) and micropaleontological tracers from the Chukchi Sea southern shelf (present study) can be used to document the status of the gateway. Here, North Pacific microfossils transported by currents through the gateway demonstrate its full effectiveness at ca 6 ka BP, well after the insolation maximum of the early Holocene but when SL had reached its maximum postglacial elevation, with significant impacts on Arctic Ocean salinity, sea-ice cover and productivity.. This out-of-phase behavior of the Arctic Ocean may have impacted the North Atlantic and Northern Hemisphere climate system, as the openings and closings of Bering Strait constitute critical tipping points on this system, off out of phase with other parameters controlling more globally the climate of the Northern Hemisphere.</p>

2022 ◽  
pp. 1-59
Author(s):  
Paul J. Kushner ◽  
Russell Blackport ◽  
Kelly E. McCusker ◽  
Thomas Oudar ◽  
Lantao Sun ◽  
...  

Abstract Analyzing a multi-model ensemble of coupled climate model simulations forced with Arctic sea-ice loss using a two-parameter pattern-scaling technique to remove the cross-coupling between low- and high-latitude responses, the sensitivity to high-latitude sea-ice loss is isolated and contrasted to the sensitivity to low-latitude warming. In spite of some differences in experimental design, the Northern Hemisphere near-surface atmospheric sensitivity to sea-ice loss is found to be robust across models in the cold season; however, a larger inter-model spread is found at the surface in boreal summer, and in the free tropospheric circulation. In contrast, the sensitivity to low-latitude warming is most robust in the free troposphere and in the warm season, with more inter-model spread in the surface ocean and surface heat flux over the Northern Hemisphere. The robust signals associated with sea-ice loss include upward turbulent and longwave heat fluxes where sea-ice is lost, warming and freshening of the Arctic ocean, warming of the eastern North Pacific relative to the western North Pacific with upward turbulent heat fluxes in the Kuroshio extension, and salinification of the shallow shelf seas of the Arctic Ocean alongside freshening in the subpolar North Atlantic. In contrast, the robust signals associated with low-latitude warming include intensified ocean warming and upward latent heat fluxes near the western boundary currents, freshening of the Pacific Ocean, salinification of the North Atlantic, and downward sensible and longwave fluxes over the ocean.


2021 ◽  
Author(s):  
Yarisbel Garcia Quintana ◽  
Paul G. Myers ◽  
Kent Moore

<p>Nares Strait, between Greenland and Ellesmere Island, is one of the main pathways connecting the Arctic Ocean to the North Atlantic. The multi-year sea ice that is transported through the strait plays an important role in the mass balance of Arctic sea-ice as well as influencing the climate of the North Atlantic region. This transport is modulated by the formation of ice arches that form at the southern and northern of the strait.  The arches also play an important role in the maintenance of the North Water Polynya (NOW) that forms at the southern end of the strait. The NOW is one of the largest and most productive of Arctic polynyas. Given its significance, we use an eddy-permitting regional configuration of the Nucleus for European Modelling of the Ocean (NEMO) to explore sea-ice variability along Nares Strait, from 2002 to 2019. The model is coupled with the Louvain-la-Neuve (LIM2) sea ice thermodynamic and dynamic numerical model and is forced by the Canadian Meteorological Centre’s Global Deterministic Prediction System Reforecasts.</p><p>We use the model to explore the variability in ocean and sea ice characteristics along Nares Strait. The positive and negative degree days, measures of ice decay and growth, along the strait are consistent with the warming that the region is experiencing. Sea-ice production/decay did not show any significant change other than an enhanced decay during the summers of 2017-1019. Sea-ice thickness on the other hand has decreased significantly since 2007. This decrease has been more pronounced along the northern (north of Kane Basin) portion of the strait. What is more, ocean model data indicates that since 2007 the northern Nares Strait upper 100m layer has become fresher, indicating an increase in the freshwater export out of the Arctic Ocean and through the strait. The southern portion of the strait, on the other hand, has become warmer and saltier, which would be consistent with an influx of Irminger Water as proposed by previous modelling results. These changes could impact the formation and stability of the ice arch and hence the cessation of ice transport down Nares Strait as well as contributing to changes in the characteristics of the NOW. </p>


Changes of the extent of the Arctic Ocean sea-ice cover over the past century, the geological record of the Arctic Ocean seafloor of the youngest geological past, as well as the evidence of a pre-Glacial temperate to warm Arctic Ocean during Mesozoic and Palaeogene time are witnesses of dramatic revolutions of the Arctic oceanography. The climate over northwestern Europe on a regional scale as well as the global environment have responded to these revolutions instantly over geological time scales. Results of ocean drilling in the deep northern North Atlantic document an onset of Northern Hemisphere glaciation towards the end of the middle Miocene (10-14 Ma). While the available evidence points to early glaciations of modest extent and intensity centred around southern Greenland, the early to mid-Pliocene intervals record a sudden intensification of ice-rafting in the Labrador and Norwegian Greenland seas as well as in the Arctic Ocean proper. The Greenland ice cap seems to have remained rather stable whereas the northwest European ice shields have experienced rapid and dramatic changes leading to their frequent complete destruction. Many sediment properties seem to suggest that orbital parameters (Milankovitch-frequencies) and their temporal variability control important properties of the deep-sea floor depositional environment. Obliquity (with approximately 40 ka) seems to be dominant in pre-Glacial (middle Miocene) as well as Glacial (post late Miocene) scenarios whereas eccentricity (with approximately 100 ka) only dominated the past 600-800 ka. PlioPleistocene deposits of the Arctic Ocean proper, of the entire Norwegian Greenland and of the Labrador seas have recorded the almost continuous presence of sea-ice cover with only short ‘interglacial’ intervals when the eastern Norwegian Sea was ice-free. The documentation of long-term changes of the oceanographic and climatic properties of the Arctic environments recorded in the sediment cover of the deepsea floors might also serve to explain scenarios which have no modern analog, but which might well develop in the future under the influence of the anthropogenic drift towards warmer global climates.


2009 ◽  
Vol 9 (5) ◽  
pp. 20913-20948 ◽  
Author(s):  
J. Sommar ◽  
M. E. Andersson ◽  
H.-W. Jacobi

Abstract. Using the Swedish icebreaker Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0), divalent mercury HgII(g) (acronym RGM) and mercury attached to particles (PHg)) and some long-lived trace gases (carbon monoxide CO and ozone O3) were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July–September, 2005) during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska – Chukchi Penninsula – Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen). The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N. During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0} pulse in the water was spilled with some time-delay into the air samples collected ~20 m a.s.l. Several episodes of elevated Hg0(g) were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m−3) compared to the marine boundary layer over ice-free oceanic waters (1.55±0.21 ng m−3). In addition, an overall majority of the variance in the temporal series of Hg0 concentrations was observed during July. Atmospheric boundary layer {O3} mixing ratios decreased when initially sailing northward. In the Arctic, an O3 minimum around 15–20 ppbv was observed during summer (July–August). Alongside the polar transect during the beginning of autumn, a steady trend of increasing O3 mixing ratios was measured returning to initial levels of the expedition (>30 ppbv). Ambient CO was fairly stable (84&plusmn12 ppbv) during the expedition. However, from the Beaufort Sea and moving onwards steadily increasing CO mixing ratios were observed (0.3 ppbv day−1). On a comparison with coeval archived CO and O3 data from the Arctic coastal strip monitoring sites Barrow and Alert, the observations from Oden indicate these species to be homogeneously distributed over the Arctic Ocean. Neither correlated low ozone and GEM events nor elevated concentrations of RGM and PHg were at any extent sampled, suggesting that atmospheric mercury deposition to the Arctic basin is low during the Polar summer and autumn. Elevated levels of Hg0 and CO were episodically observed in air along the Chukchi Peninsula indicating transport of regional pollution.


2010 ◽  
Vol 10 (11) ◽  
pp. 5031-5045 ◽  
Author(s):  
J. Sommar ◽  
M. E. Andersson ◽  
H.-W. Jacobi

Abstract. Using the Swedish icebreaker Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0), divalent gaseous mercury species HgIIX2(g) (acronym RGM) and mercury attached to particles (PHg)) and some long-lived trace gases (carbon monoxide CO and ozone O3) were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July–September 2005) during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska – Chukchi Penninsula – Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen). The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N. During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0 pulse in the water was transferred with some time-delay into the air samples collected ~20 m above sea level. Several episodes of elevated Hg0 in air were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m−3) compared to the marine boundary layer over ice-free Arctic oceanic waters (1.55±0.21 ng m−3). In addition, the bulk of the variance in the temporal series of Hg0 concentrations was observed during July. The Oden Hg0 observations compare in this aspect very favourably with those at the coastal station Alert. Atmospheric boundary layer O3 mixing ratios decreased when initially sailing northward. In the Arctic, an O3 minimum around 15–20 ppbV was observed during summer (July–August). Alongside the polar transect during the beginning of autumn, a steady trend of increasing O3 mixing ratios was measured returning to initial levels of the expedition (>30 ppbV). Ambient CO was fairly stable (84±12 ppbV) during the expedition. However, from the Beaufort Sea and moving onwards steadily increasing CO mixing ratios were observed (0.3 ppbV day−1). On a comparison with coeval archived CO and O3 data from the Arctic coastal strip monitoring sites Barrow and Alert, the observations from Oden indicate these species to be homogeneously distributed over the Arctic Ocean. Neither correlated low ozone and Hg0 events nor elevated concentrations of RGM and PHg were at any extent sampled, suggesting that atmospheric mercury deposition to the Arctic basin is low during the Polar summer and autumn.


2009 ◽  
Vol 6 (1) ◽  
pp. 971-994 ◽  
Author(s):  
E. H. Shadwick ◽  
T. Papakyriakou ◽  
A. E. F. Prowe ◽  
D. Leong ◽  
S. A. Moore ◽  
...  

Abstract. The Arctic Ocean is expected to be disproportionately sensitive to climatic changes, and is thought to be an area where such changes might be detected. The Arctic hydrological cycle is influenced by: runoff and precipitation, sea ice formation/melting, and the inflow of saline waters from Bering and Fram Straits and the Barents Sea Shelf. Pacific water is recognizable as intermediate salinity water, with high concentrations of dissolved inorganic carbon (DIC), flowing from the Arctic Ocean to the North Atlantic via the Canadian Arctic Archipelago. We present DIC data from an east-west section through the Archipelago, as part of the Canadian International Polar Year initiatives. The fractions of Pacific and Arctic Ocean waters leaving the Archipelago and entering Baffin Bay, and subsequently the North Atlantic, are computed. The eastward transport of carbon from the Pacific, via the Arctic, to the North Atlantic is estimated. Altered mixing ratios of Pacific and freshwater in the Arctic Ocean have been recorded in recent decades. Any climatically driven alterations in the composition of waters leaving the Arctic Archipelago may have implications for anthropogenic CO2 uptake, and hence ocean acidification, in the subpolar and temperate North Atlantic.


1975 ◽  
Vol 15 (73) ◽  
pp. 193-213
Author(s):  
Moira Dunbar

AbstractSLAR imagery of Nares Strait was obtained on three flights carried out in. January, March, and August of 1973 by Canadian Forces Maritime Proving and Evaluation Unit in an Argus aircraft equipped with a Motorola APS-94D SLAR; the March flight also covered two lines in the Arctic Ocean, from Alert 10 the North Pole and from the Pole down the long. 4ºE. meridian to the ice edge at about lat. 80º N. No observations on the ground were possible, but -some back-up was available on all flights from visual observations recorded in the air, and on the March flight from infrared line-scan and vertical photography.The interpretation of ice features from the SLAR imagery is discussed, and the conclusion reached that in spite of certain ambiguities the technique has great potential which will increase with improving resolution, Extent of coverage per distance flown and independence of light and cloud conditions make it unique among airborne sensors.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Julian David Hunt ◽  
Andreas Nascimento ◽  
Fabio A. Diuana ◽  
Natália de Assis Brasil Weber ◽  
Gabriel Malta Castro ◽  
...  

AbstractThe world is going through intensive changes due to global warming. It is well known that the reduction in ice cover in the Arctic Ocean further contributes to increasing the atmospheric Arctic temperature due to the reduction of the albedo effect and increase in heat absorbed by the ocean’s surface. The Arctic ice cover also works like an insulation sheet, keeping the heat in the ocean from dissipating into the cold Arctic atmosphere. Increasing the salinity of the Arctic Ocean surface would allow the warmer and less salty North Atlantic Ocean current to flow on the surface of the Arctic Ocean considerably increasing the temperature of the Arctic atmosphere and release the ocean heat trapped under the ice. This paper argues that if the North Atlantic Ocean current could maintain the Arctic Ocean ice-free during the winter, the longwave radiation heat loss into space would be larger than the increase in heat absorption due to the albedo effect. This paper presents details of the fundamentals of the Arctic Ocean circulation and presents three possible approaches for increasing the salinity of the surface water of the Arctic Ocean. It then discusses that increasing the salinity of the Arctic Ocean would warm the atmosphere of the Arctic region, but cool down the oceans and possibly the Earth. However, it might take thousands of years for the effects of cooling the oceans to cool the global average atmospheric temperature.


Sign in / Sign up

Export Citation Format

Share Document