Strategies for the chemical control of Fusarium head blight: Effect on yield, alveographic parameters and deoxynivalenol contamination in winter wheat grain

2006 ◽  
Vol 25 (3) ◽  
pp. 193-201 ◽  
Author(s):  
Massimo Blandino ◽  
Luca Minelli ◽  
Amedeo Reyneri
2020 ◽  
Vol 8 (4) ◽  
pp. 617
Author(s):  
Tim Birr ◽  
Mario Hasler ◽  
Joseph-Alexander Verreet ◽  
Holger Klink

Fusarium head blight (FHB) is one of the most important diseases of wheat, causing yield losses and mycotoxin contamination of harvested grain. A complex of different toxigenic Fusarium species is responsible for FHB and the composition and predominance of species within the FHB complex are determined by meteorological and agronomic factors. In this study, grain of three different susceptible winter wheat cultivars from seven locations in northern Germany were analysed within a five-year survey from 2013 to 2017 by quantifying DNA amounts of different species within the Fusarium community as well as deoxynivalenol (DON) and zearalenone (ZEA) concentrations. Several Fusarium species co-occur in wheat grain samples in all years and cultivars. F. graminearum was the most prevalent species, followed by F. culmorum, F. avenaceum and F. poae, while F. tricinctum and F. langsethiae played only a subordinate role in the FHB complex in terms of DNA amounts. In all cultivars, a comparable year-specific quantitative occurrence of the six detected species and mycotoxin concentrations were found, but with decreased DNA amounts and mycotoxin concentrations in the more tolerant cultivars, especially in years with higher disease pressure. In all years, similar percentages of DNA amounts of the six species to the total Fusarium DNA amount of all detected species were found between the three cultivars for each species, with F. graminearum being the most dominant species. Differences in DNA amounts and DON and ZEA concentrations between growing seasons depended mainly on moisture factors during flowering of wheat, while high precipitation and relative humidity were the crucial meteorological factors for infection of wheat grain by Fusarium. Highly positive correlations were found between the meteorological variables precipitation and relative humidity and DNA amounts of F. graminearum, DON and ZEA concentrations during flowering, whereas the corresponding correlations were much weaker several days before (heading) and after flowering (early and late milk stage).


2011 ◽  
Vol 64 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Skaidre Suproniene ◽  
Audrone Mankeviciene ◽  
Irena Gaurilcikiene

The effects of fungicides on Fusarium spp. and their associated mycotoxins in naturally infected winter wheat grain Field trials conducted at the Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (central part of Lithuania) in 2009 were aimed to evaluate the effect of fungicides on Fusarium Head Blight (FHB) in a naturally infected field. A single application of dimoxystrobin + epoxiconazole (Swing Gold), prothioconazole (Proline), metconazole (Juventus), tebuconazole (Folicur), prothioconazole + tebuconazole (Prosaro) was applied to winter wheat cv. ‘Zentos’ at the manufacturer's recommended doses at anthesis (BBCH 65). The FHB incidence and severity were assessed at milk and hard maturity stages. The percentage of Fusarium infected grain and deoxynivalenol (DON), zearalenone (ZEN) and T-2 toxin (T-2) concentrations in harvested grain were determined. In all fungicide treated plots a significant reduction of FHB incidence and severity was determined; however the fungicides did not exert any effect on the amount of Fusarium-infected grain as compared with the untreated control. A reduction of DON, ZEN and T-2 contents in grain was determined in tebuconazole treatments. Fusarium avenaceum (Fr.) Sacc, F. culmorum (W. G. Sm.) Sacc., F. poae (Peck) Wollenw, F. sporotrichioides Sherb. and F. tricinctum (Corda) Sacc were identified in wheat grain, F. poae was prevalent.


2005 ◽  
Vol 95 (10) ◽  
pp. 1225-1236 ◽  
Author(s):  
P. A. Paul ◽  
P. E. Lipps ◽  
L. V. Madden

The association between Fusarium head blight (FHB) intensity and deoxynivalenol (DON) accumulation in harvested grain is not fully understood. A quantitative review of research findings was performed to determine if there was a consistent and significant relationship between measures of Fusarium head blight intensity and DON in harvested wheat grain. Results from published and unpublished studies reporting correlations between DON and Fusarium head blight “index” (IND; field or plot-level disease severity), incidence (INC), diseased-head severity (DHS), and Fusarium-damaged kernels (FDK) were analyzed using meta-analysis to determine the overall magnitude, significance, and precision of these associations. A total of 163 studies was analyzed, with estimated correlation coefficients (r) between -0.58 and 0.99. More than 65% of all r values were >0.50, whereas less that 7% were <0. The overall mean correlation coefficients for all relationships between DON and disease intensity were significantly different from zero (P < 0.001). Based on the analysis of Fisher-transformed r values ( zr values), FDK had the strongest relationship with DON, with a mean r of 0.73, followed by IND (r = 0.62), DHS (r = 0.53), and INC (r = 0.52). The mean difference between pairs of transformed zr values (zd ) was significantly different from zero for all pairwise comparisons, except the comparison between INC and DHS. Transformed correlations were significantly affected by wheat type (spring versus winter wheat), study type (fungicide versus genotype trials), and study location (U.S. spring- and winter-wheat-growing regions, and other wheat-growing regions). The strongest correlations were observed in studies with spring wheat cultivars, in fungicide trials, and in studies conducted in U.S. spring-wheat-growing regions. There were minor effects of magnitude of disease intensity (and indirectly, environment) on the transformed correlations.


2017 ◽  
Vol 7 (3) ◽  
pp. 1083-1095
Author(s):  
Malgorzata Glosek Sobieraj ◽  
Bozena Cwalina-Ambroziak ◽  
Agnieszka Waskiewicz ◽  
Adam Perczak ◽  
Arkadiusz Stepien

Winter wheat cv. Boomer was grown in a field-plot experiment in Tomaszkowo near Olsztyn. During the growing season, the severity of Fusarium head blight (FHB was evaluated on a 5-point scale. The quantitative and qualitative composition of Fusarium fungi colonizing wheat grain was evaluated in a laboratory. The content of Fusarium mycotoxins (deoxynivalenol, DON, nivalenol, NIV, zearalenone, ZEA, fumonisins FB1 and FB2) and ergosterol (ERG) in grain was determined by high-performance liquid chromatography (HPLC). The relationships between the severity of FHB and mycotoxin concentrations in grain were determined by calculating Pearson’s correlation coefficient r in the CORR SAS procedure. The effect of microelement fertilizers on the severity of FHB, the species composition of Fusarium fungi colonizing winter wheat grains and mycotoxin concentrations in grain were determined.Analyses of winter wheat spikes revealed that FHB was less severe in 2012 (healthy ears in the NPK+Mn treatment and the lowest value of the infection index 1% was noted in the absolute control treatment) than in 2013 (the most evident symptoms of FHB in the NPK+Nano-Gro treatment – infection index of approx. 12%). Mineral fertilization, i.e. NPK, NPK with microelements (Cu, Zn, Mn) and NPK with the Nano-Gro® organic growth stimulator, reduced the production of trichothecenes, ZEA and fumonisins B1 and B2 in both years of the study. The highest levels of DON and NIV were noted in winter wheat grain in 2012 in control, control/NPK, NPK+Cu and NPK+Mn treatments. Toxin-producing fungi: Fusarium culmorum, F. poae, Gibberella avenacea, G. zeae were isolated most frequently from winter wheat grain in the above treatments. The severity of FHB was not significantly correlated with the concentrations of ERG, FB1, FB2 and ZEA in grain. A negative correlation was observed between the severity of FHB vs. DON and NIV levels in grain.  


2021 ◽  
Vol 13 (15) ◽  
pp. 3024
Author(s):  
Huiqin Ma ◽  
Wenjiang Huang ◽  
Yingying Dong ◽  
Linyi Liu ◽  
Anting Guo

Fusarium head blight (FHB) is a major winter wheat disease in China. The accurate and timely detection of wheat FHB is vital to scientific field management. By combining three types of spectral features, namely, spectral bands (SBs), vegetation indices (VIs), and wavelet features (WFs), in this study, we explore the potential of using hyperspectral imagery obtained from an unmanned aerial vehicle (UAV), to detect wheat FHB. First, during the wheat filling period, two UAV-based hyperspectral images were acquired. SBs, VIs, and WFs that were sensitive to wheat FHB were extracted and optimized from the two images. Subsequently, a field-scale wheat FHB detection model was formulated, based on the optimal spectral feature combination of SBs, VIs, and WFs (SBs + VIs + WFs), using a support vector machine. Two commonly used data normalization algorithms were utilized before the construction of the model. The single WFs, and the spectral feature combination of optimal SBs and VIs (SBs + VIs), were respectively used to formulate models for comparison and testing. The results showed that the detection model based on the normalized SBs + VIs + WFs, using min–max normalization algorithm, achieved the highest R2 of 0.88 and the lowest RMSE of 2.68% among the three models. Our results suggest that UAV-based hyperspectral imaging technology is promising for the field-scale detection of wheat FHB. Combining traditional SBs and VIs with WFs can improve the detection accuracy of wheat FHB effectively.


2010 ◽  
Vol 100 (2) ◽  
pp. 160-171 ◽  
Author(s):  
P. A. Paul ◽  
M. P. McMullen ◽  
D. E. Hershman ◽  
L. V. Madden

Multivariate random-effects meta-analyses were conducted on 12 years of data from 14 U.S. states to determine the mean yield and test-weight responses of wheat to treatment with propiconazole, prothioconazole, tebuconazole, metconazole, and prothioconazole+tebuconazole. All fungicides led to a significant increase in mean yield and test weight relative to the check (D; P < 0.001). Metconazole resulted in the highest overall yield increase, with a D of 450 kg/ha, followed by prothioconazole+tebuconazole (444.5 kg/ha), prothioconazole (419.1 kg/ha), tebuconazole (272.6 kg/ha), and propiconazole (199.6 kg/ha). Metconazole, prothioconazole+tebuconazole, and prothioconazole also resulted in the highest increases in test weight, with D values of 17.4 to 19.4 kg/m3, respectively. On a relative scale, the best three fungicides resulted in an overall 13.8 to 15.0% increase in yield but only a 2.5 to 2.8% increase in test weight. Except for prothioconazole+tebuconazole, wheat type significantly affected the yield response to treatment; depending on the fungicide, D was 110.0 to 163.7 kg/ha higher in spring than in soft-red winter wheat. Fusarium head blight (FHB) disease index (field or plot-level severity) in the untreated check plots, a measure of the risk of disease development in a study, had a significant effect on the yield response to treatment, in that D increased with increasing FHB index. The probability was estimated that fungicide treatment in a randomly selected study will result in a positive yield increase (p+) and increases of at least 250 and 500 kg/ha (p250 and p500, respectively). For the three most effective fungicide treatments (metconazole, prothioconazole+tebuconazole, and prothioconazole) at the higher selected FHB index, p+ was very large (e.g., ≥0.99 for both wheat types) but p500 was considerably lower (e.g., 0.78 to 0.92 for spring and 0.54 to 0.68 for soft-red winter wheat); at the lower FHB index, p500 for the same three fungicides was 0.34 to 0.36 for spring and only 0.09 to 0.23 for soft-red winter wheat.


2008 ◽  
Vol 88 (6) ◽  
pp. 1087-1089 ◽  
Author(s):  
Stephen N Wegulo ◽  
Floyd E Dowell

Fusarium head blight (scab) of wheat, caused by Fusarium graminearum, often results in shriveled and/or discolored kernels, which are referred to as Fusarium-damaged kernels (FDK). FDK is a major grain grading factor and therefore is routinely determined for purposes of quality assurance. Measurement of FDK is usually done visually. Visual sorting can be laborious and is subject to inconsistencies resulting from variability in intra-rater repeatability and/or inter-rater reliability. The ability of a single-kernel near-infrared (SKNIR) system to detect FDK was evaluated by comparing FDK sorted by the system to FDK sorted visually. Visual sorting was strongly correlated with sorting by the SKNIR system (0.89 ≤ r ≤ 0.91); however, the SKNIR system had a wider range of FDK detection and was more consistent. Compared with the SKNIR system, visual raters overestimated FDK in samples with a low percentage of Fusarium-damaged grain and underestimated FDK in samples with a high percentage of Fusarium-damaged grain. Key words: Wheat, Fusarium head blight, Fusarium-damaged kernels, single-kernel near-infrared


Sign in / Sign up

Export Citation Format

Share Document