Tool-use Behavior in Birds: A Hint for Understanding of the Body-mind Relationship from an Evolutionary Viewpoint

2022 ◽  
Vol 40 (1) ◽  
pp. 7-9
Author(s):  
Ei-Ichi Izawa
Keyword(s):  
Tool Use ◽  
The Body ◽  
2018 ◽  
Author(s):  
Axel Davies Vittersø ◽  
Monika Halicka ◽  
Gavin Buckingham ◽  
Michael J Proulx ◽  
Mark Wilson ◽  
...  

Representations of the body and peripersonal space can be distorted for people with some chronic pain conditions. Experimental pain induction can give rise to similar, but transient distortions in healthy individuals. However, spatial and bodily representations are dynamic, and constantly update as we interact with objects in our environment. It is unclear whether induced pain disrupts the mechanisms involved in updating these representations. In the present study, we sought to investigate the effect of induced pain on the updating of peripersonal space and body representations during and following tool-use. We compared performance under three conditions (pain, active placebo, neutral) on a visuotactile crossmodal congruency task and a tactile distance judgement task to measure updating of peripersonal space and body representations, respectively. We induced pain by applying 1% capsaicin cream to the arm, and for placebo we used a gel that induced non-painful warming. Consistent with previous findings, the difference in crossmodal interference from visual distractors in the same compared to opposite visual field to the tactile target was less when tools were crossed than uncrossed. This suggests an extension of peripersonal space to incorporate the tips of the tools. Also consistent with previous findings, estimates of the felt distance between two points (tactile distance judgements) decreased after active tool-use. In contrast to our predictions, however, we found no evidence that pain interfered with performance on either task when compared to the control conditions. This suggests that the updating of peripersonal space and body representations is not disrupted by induced pain. Therefore, acute pain does not account for the distorted representations of the body and peripersonal space that can endure in people with chronic pain conditions.


Behaviour ◽  
2002 ◽  
Vol 139 (7) ◽  
pp. 939-973 ◽  
Author(s):  
Denis Boire ◽  
Nektaria Nicolakakis ◽  
Louis Lefebvre

AbstractTools are traditionally defined as objects that are used as an extension of the body and held directly in the hand or mouth. By these standards, a vulture breaking an egg by hitting it with a stone uses a tool, but a gull dropping an egg on a rock does not. This distinction between true and borderline (or proto-tool) cases has been criticized for its arbitrariness and anthropocentrism. We show here that relative size of the neostriatum and whole brain distinguish the true and borderline categories in birds using tools to obtain food or water. From two sources, the specialized literature on tools and an innovation data base gathered in the short note sections of 68 journals in 7 areas of the world, we collected 39 true (e.g. use of probes, hammers, sponges, scoops) and 86 borderline (e.g. bait fishing, battering and dropping on anvils, holding with wedges and skewers) cases of tool use in 104 species from 15 parvorders. True tool users have a larger mean residual brain size (regressed against body weight) than do users of borderline tools, confirming the distinction in the literature. In multiple regressions, residual brain size and residual size of the neostriatum (one of the areas in the avian telencephalon thought to be equivalent to the mammalian neocortex) are the best predictors of true tool use reports per taxon. Innovation rate is the best predictor of borderline tool use distribution. Despite the strong concentration of true tool use cases in Corvida and Passerida, independent constrasts suggest that common ancestry is not responsible for the association between tool use and size of the neostriatum and whole brain. Our results demonstrate that birds are more frequent tool users than usually thought and that the complex cognitive processes involved in tool use may have repeatedly co-evolved with large brains in several orders of birds.


2020 ◽  
Vol 222 ◽  
pp. 112938 ◽  
Author(s):  
Camilla Cenni ◽  
Maurizio Casarrubea ◽  
Noëlle Gunst ◽  
Paul L. Vasey ◽  
Sergio M. Pellis ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Salam Bahmad ◽  
Luke E. Miller ◽  
Minh Tu Pham ◽  
Richard Moreau ◽  
Romeo Salemme ◽  
...  

Abstract Following tool-use, the kinematics of free-hand movements are altered. This modified kinematic pattern has been taken as a behavioral hallmark of the modification induced by tool-use on the effector representation. Proprioceptive inputs appear central in updating the estimated effector state. Here we questioned whether online proprioceptive modality that is accessed in real time, or offline, memory-based, proprioception is responsible for this update. Since normal aging affects offline proprioception only, we examined a group of 60 year-old adults for proprioceptive acuity and movement’s kinematics when grasping an object before and after tool-use. As a control, participants performed the same movements with a weight—equivalent to the tool—weight-attached to their wrist. Despite hampered offline proprioceptive acuity, 60 year-old participants exhibited the typical kinematic signature of tool incorporation: Namely, the latency of transport components peaks was longer and their amplitude reduced after tool-use. Instead, we observed no kinematic modifications in the control condition. In addition, online proprioception acuity correlated with tool incorporation, as indexed by the amount of kinematics changes observed after tool-use. Altogether, these findings point to the prominent role played by online proprioception in updating the body estimate for the motor control of tools.


2000 ◽  
Vol 12 (3) ◽  
pp. 415-420 ◽  
Author(s):  
Anna Berti ◽  
Francesca Frassinetti

Far (extrapersonal) and near (peripersonal) spaces are behaviorally defined as the space outside the hand-reaching distance and the space within the hand-reaching distance. Animal and human studies have confirmed this distinction, showing that space is not homogeneously represented in the brain. In this paper we demonstrate that the coding of space as “far” and “near” is not only determined by the hand-reaching distance, but it is also dependent on how the brain represents the extension of the body space. We will show that when the cerebral representation of body space is extended to include objects or tools used by the subject, space previously mapped as far can be remapped as near. Patient P.P., after a right hemisphere stroke, showed a dissociation between near and far spaces in the manifestation of neglect. Indeed, in a line bisection task, neglect was apparent in near space, but not in far space when bisection in the far space was performed with a projection lightpen. However, when in the far space bisection was performed with a stick, used by the patient to reach the line, neglect appeared and was as severe as neglect in the near space. An artificial extension of the patient's body (the stick) caused a remapping of far space as near space.


Author(s):  
J. Kevin O’regan

Cortical plasticity is often invoked to explain changes in the quality or location of experience observed in rewired animals, in sensory substitution, in extension of the body through tool use, and in the rubber hand illusion. However this appeal to cortical plasticity may be misleading, because it suggests that the cortical areas that are plastic are themselves the loci of generation of experience. This would be an error, I claim, since cortical areas do not generate experience. Cortical areas participate in enabling the interaction of an agent with its environment, and the quality of this interaction constitutes the quality of experience. Thus it is not plasticity in itself, but the change in modes of interaction which plasticity allows, which gives rise to the change of experience observed in these studies.


2019 ◽  
Vol 31 (12) ◽  
pp. 1782-1795 ◽  
Author(s):  
Luke E. Miller ◽  
Matthew R. Longo ◽  
Ayse P. Saygin

Tool use leads to plastic changes in sensorimotor body representations underlying tactile perception. The neural correlates of this tool-induced plasticity in humans have not been adequately characterized. This study used ERPs to investigate the stage of sensory processing modulated by tool use. Somatosensory evoked potentials, elicited by median nerve stimulation, were recorded before and after two forms of object interaction: tool use and hand use. Compared with baseline, tool use—but not use of the hand alone—modulated the amplitude of the P100. The P100 is a mid-latency component that indexes the construction of multisensory models of the body and has generators in secondary somatosensory and posterior parietal cortices. These results mark one of the first demonstrations of the neural correlates of tool-induced plasticity in humans and suggest that tool use modulates relatively late stages of somatosensory processing outside primary somatosensory cortex. This finding is consistent with what has been observed in tool-trained monkeys and suggests that the mechanisms underlying tool-induced plasticity have been preserved across primate evolution.


Author(s):  
Shinya Yamamoto ◽  
Gen Yamakoshi ◽  
Tatyana Humle ◽  
Tetsuro Matsuzawa
Keyword(s):  
Tool Use ◽  

2014 ◽  
Vol 7 (2) ◽  
Author(s):  
Peter Woelert

AbstractThis paper explores some of the cognitive-ecological dimensions of various manual forms of tool use occurring among human agents. In particular, it clarifies what such forms reveal about the intentionality of the human mind. Integrating phenomenological, philosophical and anthropological findings and perspectives, I argue that there exists not one but at least three different forms of operative types of intentionality that are associated with three specific forms of manual technical activity. First, there is the direct type of operative intentionality that realizes itself through a human agent’s concrete bodily movements. Second, there is a materially mediated form of operative intentionality, which is required for performing those technical activities where the external tool directly extends the movements of the human body. Third, there is a more complex variety of such materially mediated intentionality, which underpins those forms of tool use where the dynamics of the tool and those of the body significantly diverge. It is suggested that the relation between these three forms of operative intentionality is best conceived in terms of a structural hierarchy.


Sign in / Sign up

Export Citation Format

Share Document