scholarly journals Case Report: Scrambler Therapy for Treatment-Resistant Central Neuropathic Pain in a Patient with Transverse Myelitis

2019 ◽  
Vol 21 (2) ◽  
pp. 76-80 ◽  
Author(s):  
Maureen A. Mealy ◽  
Scott D. Newsome ◽  
Sharon L. Kozachik ◽  
Michael Levy ◽  
Thomas J. Smith

Abstract Central neuropathic pain is a severely disabling consequence of conditions that cause tissue damage in the central nervous system. It is often refractory to treatments commonly used for peripheral neuropathy. Scrambler therapy is an emerging noninvasive pain-modifying technique that uses transcutaneous electrical stimulation of nociceptive fibers with the intent of reorganizing maladaptive signaling pathways. It has been examined for the treatment of peripheral neuropathy with favorable safety and efficacy outcomes, but its application to central neuropathic pain has not been reported in transverse myelitis. We describe the use of Scrambler therapy in a patient with persistent central neuropathic pain due to transverse myelitis. The patient had tried multiple drugs for treatment of the pain, but they were not effective or caused adverse effects. After a course of Scrambler therapy, pain scores improved considerably more than what was reported with previous pharmacologic and nonpharmacologic interventions. This case supports further investigation of Scrambler therapy in multiple sclerosis, neuromyelitis optica spectrum disorder, and other immune-mediated disorders that damage the central nervous system.

2017 ◽  
Vol 16 (03) ◽  
pp. 164-170
Author(s):  
Rachel Gottlieb-Smith ◽  
Amy Waldman

AbstractAcquired demyelinating syndromes (ADS) present with acute or subacute monofocal or polyfocal neurologic deficits localizing to the central nervous system. The clinical features of distinct ADS have been carefully characterized including optic neuritis, transverse myelitis, and acute disseminated encephalomyelitis. These disorders may all be monophasic disorders. Alternatively, optic neuritis, partial transverse myelitis, and acute disseminated encephalomyelitis may be first presentations of a relapsing or polyphasic neuroinflammatory disorder, such as multiple sclerosis or neuromyelitis optica. The clinical features of these disorders and the differential diagnosis are discussed in this article.


CNS Spectrums ◽  
2005 ◽  
Vol 10 (4) ◽  
pp. 298-308 ◽  
Author(s):  
Walter Zieglgänsberger ◽  
Achim Berthele ◽  
Thomas R. Tölle

AbstractNeuropathic pain is defined as a chronic pain condition that occurs or persists after a primary lesion or dysfunction of the peripheral or central nervous system. Traumatic injury of peripheral nerves also increases the excitability of nociceptors in and around nerve trunks and involves components released from nerve terminals (neurogenic inflammation) and immunological and vascular components from cells resident within or recruited into the affected area. Action potentials generated in nociceptors and injured nerve fibers release excitatory neurotransmitters at their synaptic terminals such as L-glutamate and substance P and trigger cellular events in the central nervous system that extend over different time frames. Short-term alterations of neuronal excitability, reflected for example in rapid changes of neuronal discharge activity, are sensitive to conventional analgesics, and do not commonly involve alterations in activity-dependent gene expression. Novel compounds and new regimens for drug treatment to influence activity-dependent long-term changes in pain transducing and suppressive systems (pain matrix) are emerging.


2011 ◽  
Vol 64 (9-10) ◽  
pp. 443-447
Author(s):  
Milan Cvijanovic ◽  
Svetlana Simic ◽  
Sofija Banic-Horvat ◽  
Zita Jovin ◽  
Petar Slankamenac ◽  
...  

Introduction. Neuropathic pain, or pain associated with disease or injury to the peripheral or central nervous system, is a common symptom of a heterogeneous group of conditions, including diabetic neuropathy, trigeminal neuralgia, postherpetic neuralgia and spinal cord injury. Chronic neuropathic pain should not be thought of as a symptom. It should truly be thought of as a disease with a very complicated pathophysiology. Pathophysiology. The mechanisms involved in neuropathic pain are complex and involve both peripheral and central pathophysiologic phenomenon. The underlying dysfunction may involve deafferentation within the peripheral nervous system (e.g. neuropathy), deafferentation within the central nervous system (e.g. post-thalamic stroke) or an imbalance between the two (e.g. phantom limb pain). Clinical characteristics. Neuropathic pain is non-nociceptive, in contrast to acute nociceptive pain, and it can be described as ?burning?, ?electric?, ?tingling?, and ?shooting? in nature. Treatment. Rational polypharmacy is often necessary and actually it is almost always the rule. It would be an exception if a patient was completely satisfied with his treatment. Treatment goals should include understanding that our patients may need to be titrated and managed with more than one agent and one type of treatment. There should be the balance of safety, efficacy, and tolerability. Conclusion. There are many new agents and new applications of the existing agents being currently studied which will most certainly lead to even more improved ways of managing this very complicated set of disorders.


Cornea ◽  
2017 ◽  
Vol 36 (11) ◽  
pp. 1408-1414 ◽  
Author(s):  
Yan Xiang ◽  
Wenchang Zhou ◽  
Ping Wang ◽  
Hui Yang ◽  
Feng Gao ◽  
...  

Author(s):  
Teri L. Schreiner ◽  
Jeffrey L. Bennett

Neuromyelitis optica (NMO), or Devic’s disease is an inflammatory disorder of the central nervous system that preferentially affects the optic nerves and spinal cord. Initially considered a variant of multiple sclerosis (MS), NMO is now clearly recognized to have distinct clinical, radiographic, and pathologic characteristics. Historically, the diagnosis of NMO required bilateral optic neuritis and transverse myelitis; however, the identification of a specific biomarker, NMO-IgG, an autoantibody against the aquaporin-4 (AQP4) water channel, has broadened NMO spectrum disease to include patients with diverse clinical and radiographic presentations. This chapter addresses the diagnosis, pathophysiology, and management of the disease.


2017 ◽  
Vol 01 (01) ◽  
pp. E36-E47
Author(s):  
Steffen Pfeuffer ◽  
Christine Strippel ◽  
Heinz Wiendl

AbstractNeuromyelitis optica spectrum disorders (NMOSD) represent a rare subset of chronic-inflammatory diseases of the central nervous system. Despite heterogeneities in disease activity, there is a higher degree of disability accumulation in NMOSD patients compared to MS patients. According to the revised diagnostic criteria, a recommendation was made to abandon the term NMO and to summarize these conditions as NMOSD. Clinical presentation of NMOSD patients in most cases is optic neuritis and transverse myelitis but nevertheless, NMOSD can affect most parts of the central nervous system (e. g. brainstem and hypothalamus). Originally characterized as AQP4-antibody-dependent disease, it has recently been discussed whether conditions with presence of antibodies against myelin oligodendrocyte glycoprotein (MOG) belong to the family of NMOSD. Due to the severity of the disease with often devastating relapses, systematic therapy is necessary. Usually, immunosuppressants or monoclonal antibodies with anti-inflammatory properties are used. Recently, four substances entered clinical testing for treatment of NMOSD.


2021 ◽  
Vol 15 (4) ◽  
pp. 404-414
Author(s):  
O. N. Voskresenskaya ◽  
V. O. Bitsadze ◽  
J. Kh. Khizroeva ◽  
T. A. Sukontseva ◽  
M. V. Tretyakova ◽  
...  

Antiphospholipid syndrome (APS) is an autoimmune process that increases the risk of arterial and venous thrombosis. The mechanism of damage to the central nervous system (CNS) can be not only due to thrombosis, but also antiphospholipid antibodies (APA) circulating in the peripheral blood. The latter can damage the cerebral vascular endothelium, alter the resistance of the blood-brain barrier and penetrate into the central nervous system, exerting a damaging effect on astroglia and neurons, as evidenced by the release of neurospecific proteins into the peripheral bloodstream. The role of APS in developing cerebral ischemia, migraine, epilepsy, chorea, transverse myelitis, multiple sclerosis, cognitive impairment and mental disorders, as well as the peripheral nervous system is described. It should also be noted about a role of APS for emerging neurological disorders in COVID-19, enabled apart from thrombogenesis due to APA via 2 potential mechanisms - molecular mimicry and neoepitope formation. Further study of the APS pathogenesis and interdisciplinary interaction are necessary to develop effective methods for patient management.


Author(s):  
SUBHRANSU SEKHAR JENA ◽  
MONALISA JENA ◽  
NIBEDITA PATRO ◽  
SWATI MISHRA ◽  
MAITREYEE PANDA ◽  
...  

Objective: Neuropathic pain arises from damage or pathological changes in the peripheral or central nervous system. The pain is difficult to treat as standard treatment with conventional analgesics doesn`t typically provide effective relief of pain. Methods: It was a one-year study of utilization and analysis of prescriptions for PNDs (Painful neuropathic disorders). The parameters evaluated were demographic profile of the patient (age and gender), type and etiology of PNDs, drug data (name of the group of drugs with individual drugs, mono or polytherapy, number of drugs per prescription, formulation) and associated adverse drug reactions (ADR) with the prescribed drug. Results: Maximum number of patients of PNDs resides in the age group of 18 – 35 yrs (41.2%) & more common in females. The most common PND encountered was painful diabetic neuropathy (43.9%) followed by cervical and lumbar radiculopathy, postherpetic neuralgia. 2942 drugs were prescribed in 1020 prescriptions out of which 96.8% were oral and 3.2% were topical formulations. Most frequently prescribed group of the drug was tricyclic antidepressants (27.3%) followed by anticonvulsants (25.3%). Polypharmacy was seen 89.7% as compared to monotherapy (10.3%). Only 132 ADRs of various types were seen. The most common organ system affected was the central nervous system followed by gastro intestinal systems. The most common drugs implicated for ADRs were TCAs (24.4%), anticonvulsants (16.6%), and Pregabeline (9.8%). There were no fatal adverse events. Mild to moderate ADRs included constipation, nausea, vomiting, drowsiness, dryness of mouth. Conclusions: The choice of drug depends on etiology of neuropathic pain, drug efficacy and availability and also on ADR profile.


Sign in / Sign up

Export Citation Format

Share Document