scholarly journals A Study on the Mechanical Properties and Specific Resistivity of Reaction-Bonded Silicon Carbide According to α-SiC of Various Mixed Particle Size

2012 ◽  
Vol 25 (6) ◽  
pp. 172-177 ◽  
Author(s):  
Young-Ju Kim ◽  
Young-Shik Park ◽  
Youn-Woong Jung ◽  
Jun-Baek Song ◽  
So-Young Park ◽  
...  
Author(s):  
Nataliya Kalinina ◽  
Tetyana Nosova ◽  
Stella Mamchur ◽  
Nataliya Tsokur ◽  
Nikita Komarov

The effect of modification with dispersed compositions on the grain structure and mechanical properties of industrial aluminum alloys has been studied. Aluminum alloys of the Al-Si, Al-Mg-Sc, Al-Cu-Mn systems were modified with dispersed Mg2Si powder with a particle size of up to 200 nm. The amount of modifier to be added to the melt is calculated. The physicochemical properties of dispersed Mg2Si have been studied. Melting of the AMg6, 1570, 2219, AK9ch alloys in the initial state and with the treatment of Mg2Si melts have been carried out. The action of insoluble applications, isomorphic to aluminum, the similarity of the influence of soluble elements holds only when the amount of insoluble addition exceeds the number of crystals formed arbitrarily under the same conditions. Thus, with an increase in the amount of insoluble addition, in particular silicon carbide particles, the grain size first decreases and then remains constant. The mechanism of the influence of dispersed particles of magnesium silicide on the formation of the structure of hypoeutectic aluminum alloys during crystallization is that their bulk is pushed out by the crystallization front into the liquid phase and participates in the refinement of the structural components of the alloy. To determine the optimal amount of silicon carbide modifier, industrial melting and testing were performed on specimens that underwent heat treatment according to the T6 mode (quenching and artificial aging). The quality of cast aluminum alloys during modification depends on many factors: the nature of the dispersed phase, the temperature of the melt, and the modes of its mixing with the introduction of particles. Dependences of the particle size and the amount of the modifier on the mechanical properties of the alloys have been established. The mechanism of interaction of the modifier with aluminum melt during crystallization has been established. In industrial experiments, the most effective size of SiC particles for increasing the σm of the AK9ch alloy from 115 to 260 MPa in the as-cast state has been established. The optimal content of Mg2Si (0.10 %) for increasing the σm of aluminum alloys has been determined.


2012 ◽  
Vol 27 (9) ◽  
pp. 965-969
Author(s):  
Xiao YANG ◽  
Xue-Jian LIU ◽  
Zheng-Ren HUANG ◽  
Gui-Ling LIU ◽  
Xiu-Min YAO

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


Sign in / Sign up

Export Citation Format

Share Document