scholarly journals Spatial and temporal variability of benthic primary production in upwelling-influenced Colombian Caribbean coral reefs

Author(s):  
Corvin Eidens ◽  
Elisa Bayraktarov ◽  
Valeria Pizarro ◽  
Thomas Wilke ◽  
Christian Wild

In Tayrona National Natural Park (Colombian Caribbean), abiotic factors such as light intensity, water temperature, and nutrient availability are subjected to high temporal variability due to seasonal coastal upwelling. These factors are major drivers controlling coral reef primary production. This offers the opportunity to assess the effects of abiotic factors on key coral reef ecosystem services in terms of productivity. We therefore quantified primary net (Pn) and gross production (Pg) of the dominant local primary producers (scleractinian corals, macroalgae, algal turfs, crustose coralline algae, and microphytobenthos) at a water current/wave-exposed (EXP) and -sheltered (SHE) site in an exemplary bay of Tayrona National Natural Park. A series of short-term incubations was conducted to quantify O2 fluxes of the different primary producers before and at the end of the upwelling event 2011/2012. At the level of the organism, scleractinian corals showed highest Pn and Pg rates before upwelling (16 and 19 mmol O2 m-2 specimen area h-1), and corals and algal turfs dominated the primary production at the end of upwelling (12 and 19 mmol O2 m-2 specimen area h-1, respectively). At the ecosystem level, corals contributed most to total Pn (EXP: 81 %; SHE: 65 %) and Pg (EXP: 78 %; SHE: 55 %) before the upwelling, while at the end of the upwelling, corals contributed most to Pn and Pg only at EXP (73 and 75 %) and macroalgae at SHE (52 and 46 %, respectively). Despite the significant spatial and temporal differences in individual productivity of investigated groups and their different contribution to reef productivity, no spatial or temporal differences in daily ecosystem Pn and Pg were detected (194 – 218 and 311 – 409 mmol O2 m-2 seafloor area d-1). Our findings therefore indicate that local autotrophic benthic reef communities are well adapted to pronounced fluctuations of environmental key parameters. This might lead to a higher resilience against climate change consequences and anthropogenic disturbances.

2014 ◽  
Author(s):  
Corvin Eidens ◽  
Elisa Bayraktarov ◽  
Valeria Pizarro ◽  
Thomas Wilke ◽  
Christian Wild

In Tayrona National Natural Park (Colombian Caribbean), abiotic factors such as light intensity, water temperature, and nutrient availability are subjected to high temporal variability due to seasonal coastal upwelling. These factors are major drivers controlling coral reef primary production. This offers the opportunity to assess the effects of abiotic factors on key coral reef ecosystem services in terms of productivity. We therefore quantified primary net (Pn) and gross production (Pg) of the dominant local primary producers (scleractinian corals, macroalgae, algal turfs, crustose coralline algae, and microphytobenthos) at a water current/wave-exposed (EXP) and -sheltered (SHE) site in an exemplary bay of Tayrona National Natural Park. A series of short-term incubations was conducted to quantify O2 fluxes of the different primary producers before and at the end of the upwelling event 2011/2012. At the level of the organism, scleractinian corals showed highest Pn and Pg rates before upwelling (16 and 19 mmol O2 m-2 specimen area h-1), and corals and algal turfs dominated the primary production at the end of upwelling (12 and 19 mmol O2 m-2 specimen area h-1, respectively). At the ecosystem level, corals contributed most to total Pn (EXP: 81 %; SHE: 65 %) and Pg (EXP: 78 %; SHE: 55 %) before the upwelling, while at the end of the upwelling, corals contributed most to Pn and Pg only at EXP (73 and 75 %) and macroalgae at SHE (52 and 46 %, respectively). Despite the significant spatial and temporal differences in individual productivity of investigated groups and their different contribution to reef productivity, no spatial or temporal differences in daily ecosystem Pn and Pg were detected (194 – 218 and 311 – 409 mmol O2 m-2 seafloor area d-1). Our findings therefore indicate that local autotrophic benthic reef communities are well adapted to pronounced fluctuations of environmental key parameters. This might lead to a higher resilience against climate change consequences and anthropogenic disturbances.


2020 ◽  
Vol 655 ◽  
pp. 185-198
Author(s):  
J Weil ◽  
WDP Duguid ◽  
F Juanes

Variation in the energy content of prey can drive the diet choice, growth and ultimate survival of consumers. In Pacific salmon species, obtaining sufficient energy for rapid growth during early marine residence is hypothesized to reduce the risk of size-selective mortality. In order to determine the energetic benefit of feeding choices for individuals, accurate estimates of energy density (ED) across prey groups are required. Frequently, a single species is assumed to be representative of a larger taxonomic group or related species. Further, single-point estimates are often assumed to be representative of a group across seasons, despite temporal variability. To test the validity of these practices, we sampled zooplankton prey of juvenile Chinook salmon to investigate fine-scale taxonomic and temporal differences in ED. Using a recently developed model to estimate the ED of organisms using percent ash-free dry weight, we compared energy content of several groups that are typically grouped together in growth studies. Decapod megalopae were more energy rich than zoeae and showed family-level variability in ED. Amphipods showed significant species-level variability in ED. Temporal differences were observed, but patterns were not consistent among groups. Bioenergetic model simulations showed that growth rate of juvenile Chinook salmon was almost identical when prey ED values were calculated on a fine scale or on a taxon-averaged coarse scale. However, single-species representative calculations of prey ED yielded highly variable output in growth depending on the representative species used. These results suggest that the latter approach may yield significantly biased results.


2014 ◽  
Vol 11 (11) ◽  
pp. 2977-2990 ◽  
Author(s):  
E. Bayraktarov ◽  
C. Wild

Abstract. Sediments are fundamental for the function of oligotrophic coral reef ecosystems because they are major places for organic matter recycling. The Tayrona National Natural Park (TNNP, Colombian Caribbean) is located between the population center Santa Marta (>455 000 inhabitants) in the southwest and several river mouths in the east. Here, coral reef sediments experience pronounced changes in environmental conditions due to seasonal coastal upwelling, but knowledge of relevant spatiotemporal effects on organic matter supply to the sediments and recycling processes is not available. Therefore, sediment traps were deployed monthly over 14 months complemented by assessment of sedimentary properties (e.g., porosity, grain size, content of particulate organic matter and pigments) and sedimentary O2 demand (SOD) at water-current-exposed and sheltered sites along distance gradients (12–20 km) to Santa Marta and the eastern river mouths (17–27 km). Findings revealed that seasonal upwelling delivered strong (75–79% of annual supply) pulses of labile organic matter mainly composed of fresh phytoplankton detritus (C : N ratio 6–8) to the seafloor. Sedimentary chlorophyll a contents and SOD increased significantly with decreasing distance to the eastern rivers, but only during upwelling. This suggests sedimentary organic matter supply controlled by nutrient-enriched upwelling waters and riverine runoff rather than by the countercurrent-located city of Santa Marta. Organic matter pulses led to significantly higher SOD (more than 30%) at the water-current-sheltered sites as compared to the exposed sites, ensuing a rapid recycling of the supplied labile organic matter in the permeable silicate reef sands.


2006 ◽  
Vol 3 (4) ◽  
pp. 895-959 ◽  
Author(s):  
J.-P. Gattuso ◽  
B. Gentili ◽  
C. M. Duarte ◽  
J. A. Kleypas ◽  
J. J. Middelburg ◽  
...  

Abstract. One of the major features of the coastal zone is that part of its sea floor receives a significant amount of sunlight and can therefore sustain benthic primary production by seagrasses, macroalgae, microphytobenthos and corals. However, the contribution of benthic communities to the primary production of the global coastal ocean is not known, partly because the surface area where benthic primary production can proceed is poorly quantified. Here, we use a new analysis of satellite (SeaWiFS) data collected between 1998 and 2003 to estimate, for the first time at a nearly global scale, the irradiance reaching the bottom of the coastal ocean. The following cumulative functions provide the percentage of the surface of the coastal zone receiving an irradiance greater than Ez: PaNon-polar=28.80−16.69 log10(Ez)+0.84 log102(Ez)+0.83 log103(Ez) PaArctic=16.01−15.67 log10(Ez)+2.03 log102(Ez)+1.00 log103(Ez) Data on the constraint of light availability on the major benthic primary producers and net primary production are reviewed. Some photosynthetic organisms can grow deeper than the nominal bottom limit of the coastal ocean (200 m). The minimum irradiance required varies from 0.4 to 5.1 mol photons m−2 d−1 depending on the group considered. The daily compensation irradiance of benthic communities ranges from 0.24 to 4.4 mol photons m−2 d−1. Data on benthic irradiance and light requirements are combined to estimate the surface area of the coastal ocean where (1) light does not limit the distribution of primary producers and (2) net community production (NCP, the balance between gross primary production and respiration) is positive. Positive benthic NCP can occur over 37% of the global shelf area. The limitations of this approach, related to the spatial resolution of the satellite data, the parameterization used to convert reflectance data to irradiance, and the relatively limited biological information available, are discussed.


1997 ◽  
Vol 33 (5) ◽  
pp. 729-738 ◽  
Author(s):  
Jean-Pierre Gattuso ◽  
Claude E. Payri ◽  
Michel Pichon ◽  
Bruno Delesalle ◽  
Michel Frankignoulle

Plant Ecology ◽  
2017 ◽  
Vol 218 (9) ◽  
pp. 1117-1133 ◽  
Author(s):  
Meiling Zhang ◽  
Rattan Lal ◽  
Youyi Zhao ◽  
Wenlan Jiang ◽  
Quangong Chen

Sign in / Sign up

Export Citation Format

Share Document