scholarly journals Validation of reference genes for gene expression studies in post-harvest leaves of tea plant (Camellia sinensis)

Author(s):  
Ziwei Zhou ◽  
Huili Deng ◽  
Qingyang Wu ◽  
Binbin Liu ◽  
Chuan Yue ◽  
...  

Tea is one of three major non-alcoholic beverages that are popular all around the world. The economic value of the final tea product largely depends on the post-harvest physiology of tea leaves. The utilization of quantitative reverse transcription polymerase chain reaction (RT-qPCR) is a widely accepted and precise approach to determine the target gene expression of tea plants, and the reliability of results hinges on the selection of suitable reference genes. A few reliable reference genes have been documented using various treatments and different tissues of tea plants, but none have been done on post-harvest leaves during the tea manufacturing process. The present study selected and analyzed 15 candidate reference genes: Cs18SrRNA, CsGADPH, CsACT, CsEF-1α, CsUbi, CsTUA, Cs26SrRNA, CsRuBP, CsCYP, CselF-4α, CsMON1, CsPCS1, CsSAND, CsPPA2, CsTBP. This study made an assessment on the expression stability under two kinds of post-harvest treatment, turn over and withering, using three algorithms—geNorm, Normfinder and Bestkeeper. The results indicated that the three commonly used reference genes, CsTUA, Cs18SrRNA, CsRuBP, together with Cs26SrRNA, were the most unstable genes in both the turn over and witheringtreatments. CsACT, CsEF-1α, CsPPA2, and CsTBP were the top four reference genes in the turn over treatment, while CsTBP, CsPCS1, CsPPA2, CselF-4α, and CsACT were the four best reference genes in the witheringgroup. The expression level of lipoxygenase (LOX) genes, which were involved in a number of diverse aspects of plant physiology, including wounding, was evaluated to validate the findings. To conclude, we found a basis for the selection of reference genes for accurate transcription normalization in post-harvest leaves of tea plants.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6385 ◽  
Author(s):  
Zi-wei Zhou ◽  
Hui-li Deng ◽  
Qing-yang Wu ◽  
Bin-bin Liu ◽  
Chuan Yue ◽  
...  

Tea is one of three major non-alcoholic beverages that are popular all around the world. The economic value of tea product largely depends on the post-harvest physiology of tea leaves. The utilization of quantitative reverse transcription polymerase chain reaction is a widely accepted and precise approach to determine the target gene expression of tea plants, and the reliability of results hinges on the selection of suitable reference genes. A few reliable reference genes have been documented using various treatments and different tissues of tea plants, but none has been done on post-harvest leaves during the tea manufacturing process. The present study selected and analyzed 15 candidate reference genes: Cs18SrRNA, CsGADPH, CsACT, CsEF-1α, CsUbi, CsTUA, Cs26SrRNA, CsRuBP, CsCYP, CselF-4α, CsMON1, CsPCS1, CsSAND, CsPPA2, CsTBP. This study made an assessment on the expression stability under two kinds of post-harvest treatment, turn over and withering, using three algorithms—GeNorm, Normfinder, and Bestkeeper. The results indicated that the three commonly used reference genes, CsTUA, Cs18SrRNA, CsRuBP, together with Cs26SrRNA, were the most unstable genes in both the turn over and withering treatments. CsACT, CsEF-1α, CsPPA2, and CsTBP were the top four reference genes in the turn over treatment, while CsTBP, CsPCS1, CsPPA2, CselF-4α, and CsACT were the five best reference genes in the withering group. The expression level of lipoxygenase genes, which were involved in a number of diverse aspects of plant physiology, including wounding, was evaluated to validate the findings. To conclude, we found a basis for the selection of reference genes for accurate transcription normalization in post-harvest leaves of tea plants.


2018 ◽  
Author(s):  
Ziwei Zhou ◽  
Huili Deng ◽  
Qingyang Wu ◽  
Binbin Liu ◽  
Chuan Yue ◽  
...  

Tea is one of three major non-alcoholic beverages that are popular all around the world. The economic value of the final tea product largely depends on the post-harvest physiology of tea leaves. The utilization of quantitative reverse transcription polymerase chain reaction (RT-qPCR) is a widely accepted and precise approach to determine the target gene expression of tea plants, and the reliability of results hinges on the selection of suitable reference genes. A few reliable reference genes have been documented using various treatments and different tissues of tea plants, but none have been done on post-harvest leaves during the tea manufacturing process. The present study selected and analyzed 15 candidate reference genes: Cs18SrRNA, CsGADPH, CsACT, CsEF-1α, CsUbi, CsTUA, Cs26SrRNA, CsRuBP, CsCYP, CselF-4α, CsMON1, CsPCS1, CsSAND, CsPPA2, CsTBP. This study made an assessment on the expression stability under two kinds of post-harvest treatment, turn over and withering, using three algorithms—geNorm, Normfinder and Bestkeeper. The results indicated that the three commonly used reference genes, CsTUA, Cs18SrRNA, CsRuBP, together with Cs26SrRNA, were the most unstable genes in both the turn over and witheringtreatments. CsACT, CsEF-1α, CsPPA2, and CsTBP were the top four reference genes in the turn over treatment, while CsTBP, CsPCS1, CsPPA2, CselF-4α, and CsACT were the four best reference genes in the witheringgroup. The expression level of lipoxygenase (LOX) genes, which were involved in a number of diverse aspects of plant physiology, including wounding, was evaluated to validate the findings. To conclude, we found a basis for the selection of reference genes for accurate transcription normalization in post-harvest leaves of tea plants.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1217
Author(s):  
Tingting Zhou ◽  
Xiaoming Yang ◽  
Fangfang Fu ◽  
Guibin Wang ◽  
Fuliang Cao

Ginkgo biloba, a deciduous tree species in the Ginkgo family, has a long history of cultivation in China and is widely used in garden landscapes, medicine, food, and health products. However, few reports have focused on the systematic selection of optimal reference genes based on transcriptomic data in G. biloba. The purpose of our research was to select an internal reference gene suitable for different experimental conditions from thirteen candidate reference genes by the delta cycle threshold (ΔCt) method, geNorm, BestKeeper, NormFinder, and RefFinder programs. The reference genes were used for gene expression analyses of Ginkgo biloba. These results showed that elongation factor 1(EF1) and ubiquitin (UBI) were the best choices for samples of different ginkgo genotypes. The expression of UBI and HAS28 presented the most stable at different developmental stages of ginkgo, and EIF3I and RPII were considered as suitable reference genes in different tissues of ginkgo. For methyl jasmonate (MeJA) treatment, ACA and ACT were identified as the optimal reference genes. For cold stress treatment, RPII and EIF4E were chosen for the gene expression normalizations. HAS28 and GAPDH presented the most stable expression for the heat treatment. To validate the above results, a chalcone synthase gene (GbCHS) in ginkgo was amplified by quantitative real-time polymerase chain reaction (qRT-PCR). Our results provide different suitable reference genes for further gene expression studies in ginkgo.


Sign in / Sign up

Export Citation Format

Share Document