scholarly journals Selection of Suitable Reference Genes Based on Transcriptomic Data in Ginkgo biloba under Different Experimental Conditions

Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1217
Author(s):  
Tingting Zhou ◽  
Xiaoming Yang ◽  
Fangfang Fu ◽  
Guibin Wang ◽  
Fuliang Cao

Ginkgo biloba, a deciduous tree species in the Ginkgo family, has a long history of cultivation in China and is widely used in garden landscapes, medicine, food, and health products. However, few reports have focused on the systematic selection of optimal reference genes based on transcriptomic data in G. biloba. The purpose of our research was to select an internal reference gene suitable for different experimental conditions from thirteen candidate reference genes by the delta cycle threshold (ΔCt) method, geNorm, BestKeeper, NormFinder, and RefFinder programs. The reference genes were used for gene expression analyses of Ginkgo biloba. These results showed that elongation factor 1(EF1) and ubiquitin (UBI) were the best choices for samples of different ginkgo genotypes. The expression of UBI and HAS28 presented the most stable at different developmental stages of ginkgo, and EIF3I and RPII were considered as suitable reference genes in different tissues of ginkgo. For methyl jasmonate (MeJA) treatment, ACA and ACT were identified as the optimal reference genes. For cold stress treatment, RPII and EIF4E were chosen for the gene expression normalizations. HAS28 and GAPDH presented the most stable expression for the heat treatment. To validate the above results, a chalcone synthase gene (GbCHS) in ginkgo was amplified by quantitative real-time polymerase chain reaction (qRT-PCR). Our results provide different suitable reference genes for further gene expression studies in ginkgo.

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Yu Bai ◽  
Ya-Nan Lv ◽  
Mei Zeng ◽  
Pei-Yao Jia ◽  
Hu-Na Lu ◽  
...  

Zygentoma occupies a key evolutionary position for understanding the evolution of insect metamorphosis but has received little attention in terms of genetic analysis. To develop functional genomic studies in this insect, we evaluated five candidate internal reference genes for quantitative RT-PCR (qPCR) studies from Thermobia domestica, a representative species of Zygentoma, including Actin 5C (Actin5C), Elongation factor-1 alpha (EF1A), Ribosome protein S26 (RPS26), Ribosome protein L32 (RPL32), and Superoxide dismutase 2 (SOD2), at different developmental stages, in various body parts, and under dsRNA microinjection and starvation stresses, using four algorithms (delta Ct, geNorm, NormFinder and BestKeeper) and a comparative algorithm (RefFinder). Specific suitable reference genes were recommended across specific experimental conditions, and the combination of RPS26 and RPL32 was appropriate for all tested samples. Employing our selected reference gene combination, we investigated the gene expression pattern of Myoglianin (Myo), a crucial gene-regulating insect metamorphosis, in ametabolous T. domestica, and demonstrated the efficiency of RNA interference (RNAi) in firebrat nymphs. This study provides a basis for reliable quantitative studies of genes and greatly benefits evolutionary and functional genomics studies in Zygentoma.


2020 ◽  
Author(s):  
Carlos Noceda ◽  
Augusto Peixe ◽  
Birgit Arnholdt-Schmitt

Abstract BackgroungSelection of reference genes (RGs) for normalization of PCR-gene expression data includes two crucial steps: determination of the among-sample transcriptionally more stable genes and subsequent choosing of the most suitable genes as internal controls. Both steps can be carried-out through generally accepted strategies each having different strengths and weaknesses. The present study proposes to reinforce normalization of gene expression data by integrating and adding analytical revision at critical steps of those accepted procedures. Especially crucial is to counterbalance a higher representative number of RGs with a correspondent increase in their average transcriptional instability or a generalised co-expression trend among the samples. This methodological study used in vitro olive adventitious rooting as an experimental system, since the underlying morphogenetic process -wich is common to diverse species- is still not completely understood.ResultsFirstly, RG candidates were ranked according to transcriptional stability following a simple statistical method that reduces biasing effects of concomitant, systematic biological variations associated to experimental conditions, such as the variations caused by gene co-regulation. Those types of systematic co-variation are unconsidered by several popular ad hoc informatics programmes. To select the adequate genes among those already ranked, an algorithm of one of the ad hoc informatics programmes (GeNorm) was adapted to allow partial automatization of RG selection for any strategy of transcriptional-gene stability ordering. In order to delve into the resulting possible RG sets suitability for inter-assay comparisons and technical-error compensation, separate statistics were formulated. The achieved results were compared with those obtained by standard stability ranking methods. Finally, a double evaluation was performed to accurately contrast two choice RG sets. The whole strategy was applied to a panel considering several independent factors, but the suitability of the obtained putative RG sets was tested for cases restricted to fewer variables. H2B, OUB and ACT are valid for normalization in transcriptional studies on olive microshoot rooting when comparing treatments, time points and assays.ConclusionsThe set of genes identified as internal reference is now available for wider expression studies on any target gene in similar biological systems. The overall methodology aims to constitute a guide for general application.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 589
Author(s):  
Xin Yan ◽  
Yibo Zhang ◽  
Kangkang Xu ◽  
Yawei Wang ◽  
Wenjia Yang

The tomato leaf miner, Tuta absoluta is a destructive pest of tomato. The leaf-mining activities of its larvae can cause significant yield losses. Real-time quantitative polymerase chain reaction (RT-qPCR) is commonly used to measure gene expression, and the selection of stable reference genes for calibration and standardization is critical for accurate use of RT-qPCR. We studied the stable expression of nine common housekeeping genes in T. absoluta. These were examined at different developmental stages, in larval tissues, as well as those induced by exposure to 20E and insecticides. Four dedicated algorithms (geNorm, BestKeeper, NormFinder, and ΔCt method) and online tool (RefFinder) were used to analyze and rank the tested reference genes. Based on the standardized gene expression data of target gene ecdysone receptor (EcR), the applicability of specific reference genes was verified. The results clarify that the optimal internal reference genes vary greatly under different experimental conditions. GAPDH and RPS11 were the best reference genes for developmental stages; RPL28 and RPL10 for different tissues; EF1α and RPL28 for 20E treatment; EF1α and RPL7A for insecticide treatments. The most suitable reference genes in all experimental conditions are EF1α and RPL28.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 451 ◽  
Author(s):  
Junchao Zhang ◽  
Wengang Xie ◽  
Xinxuan Yu ◽  
Zongyu Zhang ◽  
Yongqiang Zhao ◽  
...  

Elymus sibiricus, which is a perennial and self-pollinated grass, is the typical species of the genus Elymus, which plays an important role in forage production and ecological restoration. No reports have, so far, systematically described the selection of optimal reference genes for reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) analysis in E. sibiricus. The goals of this study were to evaluate the expression stability of 13 candidate reference genes in different experimental conditions, and to determine the appropriate reference genes for gene expression analysis in E. sibiricus. Five methods including Delta Ct (ΔCt), BestKeeper, NormFinder, geNorm, and RefFinder were used to assess the expression stability of 13 potential reference genes. The results of the RefFinder analysis showed that TBP2 and HIS3 were the most stable reference genes in different genotypes. TUA2 and PP2A had the most stable expression in different developmental stages. TBP2 and PP2A were suitable reference genes in different tissues. Under salt stress, ACT2 and TBP2 were identified as the most stable reference genes. ACT2 and TUA2 showed the most stability under heat stress. For cold stress, PP2A and ACT2 presented the highest degree of expression stability. DNAJ and U2AF were considered as the most stable reference genes under osmotic stress. The optimal reference genes were selected to investigate the expression pattern of target gene CSLE6 in different conditions. This study provides suitable reference genes for further gene expression analysis using RT-qPCR in E. sibiricus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuping Li ◽  
Xiaoju Liang ◽  
Xuguo Zhou ◽  
Yu An ◽  
Ming Li ◽  
...  

AbstractGlycyrrhiza, a genus of perennial medicinal herbs, has been traditionally used to treat human diseases, including respiratory disorders. Functional analysis of genes involved in the synthesis, accumulation, and degradation of bioactive compounds in these medicinal plants requires accurate measurement of their expression profiles. Reverse transcription quantitative real-time PCR (RT-qPCR) is a primary tool, which requires stably expressed reference genes to serve as the internal references to normalize the target gene expression. In this study, the stability of 14 candidate reference genes from the two congeneric species G. uralensis and G. inflata, including ACT, CAC, CYP, DNAJ, DREB, EF1, RAN, TIF1, TUB, UBC2, ABCC2, COPS3, CS, R3HDM2, were evaluated across different tissues and throughout various developmental stages. More importantly, we investigated the impact of interactions between tissue and developmental stage on the performance of candidate reference genes. Four algorithms, including geNorm, NormFinder, BestKeeper, and Delta Ct, were used to analyze the expression stability and RefFinder, a comprehensive software, provided the final recommendation. Based on previous research and our preliminary data, we hypothesized that internal references for spatio-temporal gene expression are different from the reference genes suited for individual factors. In G. uralensis, the top three most stable reference genes across different tissues were R3HDM2, CAC and TUB, while CAC, CYP and ABCC2 were most suited for different developmental stages. CAC is the only candidate recommended for both biotic factors, which is reflected in the stability ranking for the spatio (tissue)-temporal (developmental stage) interactions (CAC, R3HDM2 and DNAJ). Similarly, in G. inflata, COPS3, R3HDM2 and DREB were selected for tissues, while RAN, COPS3 and CS were recommended for developmental stages. For the tissue-developmental stage interactions, COPS3, DREB and ABCC2 were the most suited reference genes. In both species, only one of the top three candidates was shared between the individual factors and their interactions, specifically, CAC in G. uralensis and COPS3 in G. inflata, which supports our overarching hypothesis. In summary, spatio-temporal selection of reference genes not only lays the foundation for functional genomics research in Glycyrrhiza, but also facilitates these traditional medicinal herbs to reach/maximize their pharmaceutical potential.


Genome ◽  
2018 ◽  
Vol 61 (5) ◽  
pp. 349-358 ◽  
Author(s):  
Yanchun You ◽  
Miao Xie ◽  
Liette Vasseur ◽  
Minsheng You

Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.


Sign in / Sign up

Export Citation Format

Share Document