scholarly journals Diversity and pathogenicity of microbial communities causing grape sour rot in eastern coastal areas of China

Author(s):  
Huanhuan Gao ◽  
Xiangtian Yin ◽  
Xilong Jiang ◽  
Hongmei Shi ◽  
Yang Yang ◽  
...  

Background As a polymicrobial disease, grape sour rot can lead to the decrease in the yield of grape berries and wine quality. The diversity of microbial communities in sour rot-infected grapes depends on the planting location of grapes and the identified methods. The east coast of China is one of the most important grape and wine regions in China and even in the world. Methods To identify the pathogenic microorganism s causing sour rot in table grapes of eastern coastal areas of China, the diversity and abundance of the bacteria and fungi were assessed based on two methods, including traditional culture-methods, and 16S rRNA and ITS gene high-throughput sequencing . Then the pathogenicity of cultivable microorganisms was determined in laboratory. Results Based on traditional culture-methods, we identified 15 cultivable bacterial species and 10 fungal species from sour rot-infected grapes. The p athogenicity assay confirmed five cultivated fungi species (three Aspergillus species, Alternaria tenuissima, and Fusarium proliferatum), and four bacteria species (two Cronobacter species, Serratia marcescens and Lysinibacillus fusiformis) as mainly pathogenic on grape. A. tenuissima, and F. proliferatum were the firstly discovered as pathogens on harvesting grape. Moreover, high-throughput sequencing revealed the OTUs numbers of bacteria and fungi were 1343.33 and 1038.67 respectively. Proteobacteria (72.15%) and Firmicutes (26.83%) were dominant phylums among the 19 bacterial phyla identified, while Ascomycota (93.86%) was the dominant fungal phylum. Then, bacteria such as Acetobacter sp., Gluconobacter sp., Bacillus sp., and Lactococcus sp. and fungi such as Incertae sedis sp., Issatchenkia terricola, Colletotrichum viniferum, Hanseniaspora vineae, Saprochaete gigas, and Candida diversa took the vast majority ofmicrobial species in sour rot-infected grapes. Therefore, more accurate and abundant microbial communities in sour rot-infected grapes could be identified using the traditional culture-methods and high-throughput sequencing.

2019 ◽  
Author(s):  
Huanhuan Gao ◽  
Xiangtian Yin ◽  
Xilong Jiang ◽  
Hongmei Shi ◽  
Yang Yang ◽  
...  

Background As a polymicrobial disease, grape sour rot can lead to the decrease in the yield of grape berries and wine quality. The diversity of microbial communities in sour rot-infected grapes depends on the planting location of grapes and the identified methods. The east coast of China is one of the most important grape and wine regions in China and even in the world. Methods To identify the pathogenic microorganism s causing sour rot in table grapes of eastern coastal areas of China, the diversity and abundance of the bacteria and fungi were assessed based on two methods, including traditional culture-methods, and 16S rRNA and ITS gene high-throughput sequencing . Then the pathogenicity of cultivable microorganisms was determined in laboratory. Results Based on traditional culture-methods, we identified 15 cultivable bacterial species and 10 fungal species from sour rot-infected grapes. The p athogenicity assay confirmed five cultivated fungi species (three Aspergillus species, Alternaria tenuissima, and Fusarium proliferatum), and four bacteria species (two Cronobacter species, Serratia marcescens and Lysinibacillus fusiformis) as mainly pathogenic on grape. A. tenuissima, and F. proliferatum were the firstly discovered as pathogens on harvesting grape. Moreover, high-throughput sequencing revealed the OTUs numbers of bacteria and fungi were 1343.33 and 1038.67 respectively. Proteobacteria (72.15%) and Firmicutes (26.83%) were dominant phylums among the 19 bacterial phyla identified, while Ascomycota (93.86%) was the dominant fungal phylum. Then, bacteria such as Acetobacter sp., Gluconobacter sp., Bacillus sp., and Lactococcus sp. and fungi such as Incertae sedis sp., Issatchenkia terricola, Colletotrichum viniferum, Hanseniaspora vineae, Saprochaete gigas, and Candida diversa took the vast majority ofmicrobial species in sour rot-infected grapes. Therefore, more accurate and abundant microbial communities in sour rot-infected grapes could be identified using the traditional culture-methods and high-throughput sequencing.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9376
Author(s):  
Huanhuan Gao ◽  
Xiangtian Yin ◽  
Xilong Jiang ◽  
Hongmei Shi ◽  
Yang Yang ◽  
...  

As a polymicrobial disease, sour rot decreases grape berry yield and wine quality. The diversity of microbial communities in sour rot-affected grapes depends on the cultivation site, but the microbes responsible for this disease in eastern coastal China, has not been reported. To identify the microbes that cause sour grape rot in this important grape-producing region, the diversity and abundance of bacteria and fungi were assessed by metagenomic analysis and cultivation-dependent techniques. A total of 15 bacteria and 10 fungi were isolated from sour rot-affected grapes. High-throughput sequencing of PCR-amplicons generated from diseased grapes revealed 1343 OTUs of bacteria and 1038 OTUs of fungi. Proteobacteria and Firmicutes were dominant phyla among the 19 bacterial phyla identified. Ascomycota was the dominant fungal phylum and the fungi Issatchenkia terricola, Colletotrichum viniferum, Hanseniaspora vineae, Saprochaete gigas, and Candida diversa represented the vast majority ofmicrobial species associated with sour rot-affected grapes. An in vitro spoilage assay confirmed that four of the isolated bacteria strains (two Cronobacter species, Serratia marcescens and Lysinibacillus fusiformis) and five of the isolated fungi strains (three Aspergillus species, Alternaria tenuissima, and Fusarium proliferatum) spoiled grapes. These microorganisms, which appear responsible for spoiling grapes in eastern China, appear closely related to microbes that cause this plant disease around the world.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 241-252
Author(s):  
Dyah Asri Handayani Taroepratjeka ◽  
Tsuyoshi Imai ◽  
Prapaipid Chairattanamanokorn ◽  
Alissara Reungsang

Extreme halophiles offer the advantage to save on the costs of sterilization and water for biohydrogen production from lignocellulosic waste after the pretreatment process with their ability to withstand extreme salt concentrations. This study identifies the dominant hydrogen-producing genera and species among the acclimatized, extremely halotolerant microbial communities taken from two salt-damaged soil locations in Khon Kaen and one location from the salt evaporation pond in Samut Sakhon, Thailand. The microbial communities’ V3–V4 regions of 16srRNA were analyzed using high-throughput amplicon sequencing. A total of 345 operational taxonomic units were obtained and the high-throughput sequencing confirmed that Firmicutes was the dominant phyla of the three communities. Halanaerobium fermentans and Halanaerobacter lacunarum were the dominant hydrogen-producing species of the communities. Spatial proximity was not found to be a determining factor for similarities between these extremely halophilic microbial communities. Through the study of the microbial communities, strategies can be developed to increase biohydrogen molar yield.


2017 ◽  
Vol 83 (22) ◽  
Author(s):  
Konstantia Gkarmiri ◽  
Shahid Mahmood ◽  
Alf Ekblad ◽  
Sadhna Alström ◽  
Nils Högberg ◽  
...  

ABSTRACT RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13CO2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia, Proteobacteria, Planctomycetes, Acidobacteria, Gemmatimonadetes, Actinobacteria, and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13C- and 12C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces, Rhizobium, and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas (Kaistobacter) were dominant in rhizosphere soil. “Candidatus Nitrososphaera” was enriched in 13C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napus. IMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13CO2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture.


Author(s):  
Jane Oja ◽  
Sakeenah Adenan ◽  
Abdel-Fattah Talaat ◽  
Juha Alatalo

A broad diversity of microorganisms can be found in soil, where they are essential for nutrient cycling and energy transfer. Recent high-throughput sequencing methods have greatly advanced our knowledge about how soil, climate and vegetation variables structure the composition of microbial communities in many world regions. However, we are lacking information from several regions in the world, e.g. Middle-East. We have collected soil from 19 different habitat types for studying the diversity and composition of soil microbial communities (both fungi and bacteria) in Qatar and determining which edaphic parameters exert the strongest influences on these communities. Preliminary results indicate that in overall bacteria are more abundant in soil than fungi and few sites have notably higher abundance of these microbes. In addition, we have detected some soil patameters, which tend to have reduced the overall fungal abundance and enhanced the presence of arbuscular mycorrhizal fungi and N-fixing bacteria. More detailed information on the diversity and composition of soil microbial communities is expected from the high-throughput sequenced data.


2014 ◽  
Vol 44 ◽  
pp. 136-141 ◽  
Author(s):  
Alejandro Aldrete-Tapia ◽  
Meyli C. Escobar-Ramírez ◽  
Mark L. Tamplin ◽  
Montserrat Hernández-Iturriaga

Sign in / Sign up

Export Citation Format

Share Document