scholarly journals Shared TCR epitope cross-reactivity could permit dyads of Foxp3+ regulatory and IL-2-producing T cell precursors to escape thymic purge

Author(s):  
David Usharauli ◽  
Tirumalai Kamala

The thymus-derived Foxp3+ regulatory T cells (Tregs) represent a unique population of CD4+ T cells responsible for maintaining dominant tolerance to auto-antigens, beneficial microbiota and potential irritants such as allergens on the one hand and efficient but balanced defense against pathogens on the other. How Tregs with high-affinity TCRs for thymically expressed epitopes survive thymic deletion or display such broad functionality is presently unclear. We recently introduced a novel framework dubbed SPIRAL (SPecific ImmunoRegulatory ALgorithm) which suggests that antigen cross-reactivity of thymic Treg repertoire could provide a mechanistic basis for its broad functionality. Here we further develop this model to propose how escape of high-affinity Tregs from thymic purge could be achieved in dyads with high-affinity natural IL-2-producing T cells (IL-2p T cells) sharing TCR epitope cross-reactivity. We believe this interpretation could reconcile contradictions related to Treg ontogeny in the thymus and their role in modulating antigen-specific immune responses.

2019 ◽  
Author(s):  
David Usharauli ◽  
Tirumalai Kamala

The thymus-derived Foxp3+ regulatory T cells (Tregs) represent a unique population of CD4+ T cells responsible for maintaining dominant tolerance to auto-antigens, beneficial microbiota and potential irritants such as allergens on the one hand and efficient but balanced defense against pathogens on the other. How Tregs with high-affinity TCRs for thymically expressed epitopes survive thymic deletion or display such broad functionality is presently unclear. We recently introduced a novel framework dubbed SPIRAL (SPecific ImmunoRegulatory ALgorithm) which suggests that antigen cross-reactivity of thymic Treg repertoire could provide a mechanistic basis for its broad functionality. Here we further develop this model to propose how escape of high-affinity Tregs from thymic purge could be achieved in dyads with high-affinity natural IL-2-producing T cells (IL-2p T cells) sharing TCR epitope cross-reactivity. We believe this interpretation could reconcile contradictions related to Treg ontogeny in the thymus and their role in modulating antigen-specific immune responses.


2004 ◽  
Vol 200 (3) ◽  
pp. 331-343 ◽  
Author(s):  
Audrey L. Kinter ◽  
Margaret Hennessey ◽  
Alicia Bell ◽  
Sarah Kern ◽  
Yin Lin ◽  
...  

Human immunodeficiency virus (HIV) disease is associated with loss of CD4+ T cells, chronic immune activation, and progressive immune dysfunction. HIV-specific responses, particularly those of CD4+ T cells, become impaired early after infection, before the loss of responses directed against other antigens; the basis for this diminution has not been elucidated fully. The potential role of CD25+CD4+ regulatory T cells (T reg cells), previously shown to inhibit immune responses directed against numerous pathogens, as suppressors of HIV-specific T cell responses was investigated. In the majority of healthy HIV-infected individuals, CD25+CD4+ T cells significantly suppressed cellular proliferation and cytokine production by CD4+ and CD8+ T cells in response to HIV antigens/peptides in vitro; these effects were cell contact dependent and IL-10 and TGF-β independent. Individuals with strong HIV-specific CD25+ T reg cell function in vitro had significantly lower levels of plasma viremia and higher CD4+: CD8+ T cell ratios than did those individuals in whom this activity could not be detected. These in vitro data suggest that CD25+CD4+ T reg cells may contribute to the diminution of HIV-specific T cell immune responses in vivo in the early stages of HIV disease.


2009 ◽  
Vol 83 (13) ◽  
pp. 6566-6577 ◽  
Author(s):  
Katherine A. Richards ◽  
Francisco A. Chaves ◽  
Andrea J. Sant

ABSTRACT The specificity of the CD4 T-cell immune response to influenza virus is influenced by the genetic complexity of the virus and periodic encounters with variant subtypes and strains. In order to understand what controls CD4 T-cell reactivity to influenza virus proteins and how the influenza virus-specific memory compartment is shaped over time, it is first necessary to understand the diversity of the primary CD4 T-cell response. In the study reported here, we have used an unbiased approach to evaluate the peptide specificity of CD4 T cells elicited after live influenza virus infection. We have focused on four viral proteins that have distinct intracellular distributions in infected cells, hemagglutinin (HA), neuraminidase (NA), nucleoprotein, and the NS1 protein, which is expressed in infected cells but excluded from virion particles. Our studies revealed an extensive diversity of influenza virus-specific CD4 T cells that includes T cells for each viral protein and for the unexpected immunogenicity of the NS1 protein. Due to the recent concern about pandemic avian influenza virus and because CD4 T cells specific for HA and NA may be particularly useful for promoting the production of neutralizing antibody to influenza virus, we have also evaluated the ability of HA- and NA-specific CD4 T cells elicited by a circulating H1N1 strain to cross-react with related sequences found in an avian H5N1 virus and find substantial cross-reactivity, suggesting that seasonal vaccines may help promote protection against avian influenza virus.


2020 ◽  
Vol 5 (51) ◽  
pp. eabb5590 ◽  
Author(s):  
Heather M. Ren ◽  
Elizabeth M. Kolawole ◽  
Mingqiang Ren ◽  
Ge Jin ◽  
Colleen S. Netherby-Winslow ◽  
...  

Development of tissue-resident memory (TRM) CD8 T cells depends on CD4 T cells. In polyomavirus central nervous system infection, brain CXCR5hi PD-1hi CD4 T cells produce interleukin-21 (IL-21), and CD8 T cells lacking IL-21 receptors (IL21R−/−) fail to become bTRM. IL-21+ CD4 T cells exhibit elevated T cell receptor (TCR) affinity and higher TCR density. IL21R−/− brain CD8 T cells do not express CD103, depend on vascular CD8 T cells for maintenance, are antigen recall defective, and lack TRM core signature genes. CD4 T cell–deficient and IL21R−/− brain CD8 T cells show similar deficiencies in expression of genes for oxidative metabolism, and intrathecal delivery of IL-21 to CD4 T cell–depleted mice restores expression of electron transport genes in CD8 T cells to wild-type levels. Thus, high-affinity CXCR5hi PD-1hi CD4 T cells in the brain produce IL-21, which drives CD8 bTRM differentiation in response to a persistent viral infection.


2006 ◽  
Vol 119 ◽  
pp. S183
Author(s):  
Sheraz Yaqub ◽  
Tone Bryn ◽  
Milada Mahic ◽  
Einar Aandahl ◽  
Kjetil Tasken

2015 ◽  
Vol 36 (4) ◽  
pp. 1259-1273 ◽  
Author(s):  
Virginia Seiffart ◽  
Julia Zoeller ◽  
Robert Klopfleisch ◽  
Munisch Wadwa ◽  
Wiebke Hansen ◽  
...  

Background/Aims: IL10 is a key inhibitor of effector T cell activation and a mediator of intestinal homeostasis. In addition, IL10 has emerged as a key immunoregulator during infection with various pathogens, ameliorating the excessive T-cell responses that are responsible for much of the immunopathology associated with the infection. Because IL10 plays an important role in both intestinal homeostasis and infection, we studied the function of IL10 in infection-associated intestinal inflammation. Methods: Wildtype mice and mice deficient in CD4+ T cell-derived or regulatory T cells-derived IL10 were infected with the enteric pathogen Citrobacter (C.) rodentium and analyzed for the specific immune response and pathogloy in the colon. Results: We found that IL10 expression is upregulated in colonic tissue after infection with C. rodentium, especially in CD4+ T cells, macrophages and dendritic cells. Whereas the deletion of IL10 in regulatory T cells had no effect on C. rodentium induced colitis, infection of mice deficient in CD4+ T cell-derived IL10 exhibited faster clearance of the bacterial burden but worse colitis, crypt hyperplasia, and pathology than did WT mice. In addition, the depletion of CD4+ T cell-derived IL10 in infected animals was accompanied by an accelerated IFNγ and IL17 response in the colon. Conclusion: Thus, we conclude that CD4+ T cell-derived IL10 is strongly involved in the control of C. rodentium-induced colitis. Interference with this network could have implications for the treatment of infection-associated intestinal inflammation.


Blood ◽  
2012 ◽  
Vol 120 (23) ◽  
pp. 4560-4570 ◽  
Author(s):  
Yuning Lu ◽  
Helga Schneider ◽  
Christopher E. Rudd

Abstract CTLA-4 inhibits T-cell activation and protects against the development of autoimmunity. We and others previously showed that the coreceptor can induce T-cell motility and shorten dwell times with dendritic cells (DCs). However, it has been unclear whether this property of CTLA-4 affects both conventional T cells (Tconvs) and regulatory T cells (Tregs). Here, we report that CTLA-4 had significantly more potent effects on the motility and contact times of Tconvs than Tregs. This was shown firstly by anti–CTLA-4 reversal of the anti-CD3 stop-signal on FoxP3-negative cells at concentrations that had no effect on FoxP3-positive Tregs. Secondly, the presence of CTLA-4 reduced the contact times of DO11.10 x CD4+CD25− Tconvs, but not DO11.10 x CD4+CD25+ Tregs, with OVA peptide presenting DCs in lymph nodes. Thirdly, blocking of CTLA-4 with anti–CTLA-4 Fab increased the contact times of Tconvs, but not Tregs with DCs. By contrast, the presence of CD28 in a comparison of Cd28−/− and Cd28+/+ DO11.10 T cells had no detectable effect on the contact times of either Tconvs or Tregs with DCs. Our findings identify for the first time a mechanistic explanation to account for CTLA-4–negative regulation of Tconv cells but not Tregs in immune responses.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sophie Steiner ◽  
Franziska Sotzny ◽  
Sandra Bauer ◽  
Il-Kang Na ◽  
Michael Schmueck-Henneresse ◽  
...  

The inability of patients with CVID to mount specific antibody responses to pathogens has raised concerns on the risk and severity of SARS-CoV-2 infection, but there might be a role for protective T cells in these patients. SARS-CoV-2 reactive T cells have been reported for SARS-CoV-2 unexposed healthy individuals. Until now, there is no data on T cell immunity to SARS-CoV-2 infection in CVID. This study aimed to evaluate reactive T cells to human endemic corona viruses (HCoV) and to study pre-existing SARS-CoV-2 reactive T cells in unexposed CVID patients. We evaluated SARS-CoV-2- and HCoV-229E and –OC43 reactive T cells in response to seven peptide pools, including spike and nucleocapsid (NCAP) proteins, in 11 unexposed CVID, 12 unexposed and 11 post COVID-19 healthy controls (HC). We further characterized reactive T cells by IFNγ, TNFα and IL-2 profiles. SARS-CoV-2 spike-reactive CD4+ T cells were detected in 7 of 11 unexposed CVID patients, albeit with fewer multifunctional (IFNγ/TNFα/IL-2) cells than unexposed HC. CVID patients had no SARS-CoV-2 NCAP reactive CD4+ T cells and less reactive CD8+ cells compared to unexposed HC. We observed a correlation between T cell reactivity against spike of SARS-CoV-2 and HCoVs in unexposed, but not post COVID-19 HC, suggesting cross-reactivity. T cell responses in post COVID-19 HC could be distinguished from unexposed HC by higher frequencies of triple-positive NCAP reactive CD4+ T cells. Taken together, SARS-CoV-2 reactive T cells are detectable in unexposed CVID patients albeit with lower recognition frequencies and polyfunctional potential. Frequencies of triple-functional reactive CD4+ cells might provide a marker to distinguish HCoV cross-reactive from SARS-CoV-2 specific T cell responses. Our data provides evidence, that anti-viral T cell immunity is not relevantly impaired in most CVID patients.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A49.1-A49
Author(s):  
MAJ de Rooij ◽  
DM van der Steen ◽  
D Remst ◽  
A Wouters ◽  
M van der Meent ◽  
...  

BackgroundCancer Testis Antigens (CTAs) are highly expressed in multiple different tumor types, but silent in normal tissue, except the testis. This tumor-restricted expression pattern makes them an ideal target for adoptive T-cell therapy. However, the responsiveness in clinical setting may be hampered because high-affinity T cells against self-antigens presented in the context of self-HLA are deleted in the thymus by negative selection. In this study, we aim to identify high-affinity T cell receptors (TCRs) specific for CTAs from the allogeneic-HLA repertoire.Materials and MethodsIn this study, HLA class I binding peptides derived from different CTA genes were identified by HLA-peptide elution experiments and subsequent mass spectrometric analysis. From the identified peptides HLA tetramers were generated to isolate peptide specific CD8+ T cells from healthy allogeneic donors. Efficacy and safety of the TCRs was determined by various different stimulation assays. The most potent TCRs were sequenced, analyzed and transduced into peripheral CD8+ and CD4+ T cells to confirm CTA specific cytokine production and cytotoxicity.ResultsMAGE and CTAG peptides were eluted from multiple myelomas, EBV-transformed lymphoblastic cells, acute myeloid leukemia and ovarium carcinomas. We selected TCRs recognizing 3 different MAGE-A1 peptides in the context of HLA-A*02:01, HLA-A*03:01 and HLA-B*07:02. Furthermore, we selected TCRs specific for MAGE-A3 in the context of HLA-B*35:01 and HLA-A*01:01; TCRs specific for MAGE-A9 in the context of HLA-A*01:01 and TCRs specific for CTAG1 in the context of HLA-A*02:01. The selected T-cell clones demonstrated efficient recognition of MAGE-A1, MAGE-A3 or CTAG1 positive multiple myeloma and solid tumor cell lines without detectable cross-reactivity.ConclusionsWe identified multiple different TCRs from the allogeneic-HLA repertoire specific for CTA genes. These TCRs demonstrate efficient recognition and killing of CTA positive multiple myeloma and solid tumor cell lines and did not show any cross-reactivity. The peptides recognized by the TCRs are presented in different HLA alleles. Since, 71% of the world population contains one of these HLA-alleles, a large percentage suffering from a MAGE or CTAG positive tumor could potentially be treated with the identified TCRs by TCR-gene therapy.Disclosure InformationM.A.J. de Rooij: None. D.M. van der Steen: None. D. Remst: None. A. Wouters: None. M. van der Meent: None. R.S. Hagedoorn: None. M.G.D. Kester: None. P.A. van Veelen: None. F.J.H. Falkenburg: None. M.H.M. Heemskerk: None.


Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3818-3827 ◽  
Author(s):  
Lis R. V. Antonelli ◽  
Yolanda Mahnke ◽  
Jessica N. Hodge ◽  
Brian O. Porter ◽  
Daniel L. Barber ◽  
...  

Abstract Immune reconstitution inflammatory syndrome (IRIS) is a considerable problem in the treatment of HIV-infected patients. To identify immunologic correlates of IRIS, we characterized T-cell phenotypic markers and serum cytokine levels in HIV patients with a range of different AIDS-defining illnesses, before and at regular time points after initiation of antiretroviral therapy. Patients developing IRIS episodes displayed higher frequencies of effector memory, PD-1+, HLA-DR+, and Ki67+ CD4+ T cells than patients without IRIS. Moreover, PD-1+ CD4+ T cells in IRIS patients expressed increased levels of LAG-3, CTLA-4, and ICOS and had a Th1/Th17 skewed cytokine profile upon polyclonal stimulation. Elevated PD-1 and Ki67 expression was also seen in regulatory T cells of IRIS patients. Furthermore, IRIS patients displayed higher serum interferon-γ, compared with non-IRIS patients, near the time of their IRIS events and higher serum interleukin-7 levels, suggesting that the T-cell populations are also exposed to augmented homeostatic signals. In conclusion, our findings indicate that IRIS appears to be a predominantly CD4-mediated phenomenon with reconstituting effector and regulatory T cells showing evidence of increased activation from antigenic exposure. These studies are registered online at http://clinicaltrials.gov as NCT00557570 and NCT00286767.


Sign in / Sign up

Export Citation Format

Share Document