scholarly journals Murine regulatory T cells differ from conventional T cells in resisting the CTLA-4 reversal of TCR stop-signal

Blood ◽  
2012 ◽  
Vol 120 (23) ◽  
pp. 4560-4570 ◽  
Author(s):  
Yuning Lu ◽  
Helga Schneider ◽  
Christopher E. Rudd

Abstract CTLA-4 inhibits T-cell activation and protects against the development of autoimmunity. We and others previously showed that the coreceptor can induce T-cell motility and shorten dwell times with dendritic cells (DCs). However, it has been unclear whether this property of CTLA-4 affects both conventional T cells (Tconvs) and regulatory T cells (Tregs). Here, we report that CTLA-4 had significantly more potent effects on the motility and contact times of Tconvs than Tregs. This was shown firstly by anti–CTLA-4 reversal of the anti-CD3 stop-signal on FoxP3-negative cells at concentrations that had no effect on FoxP3-positive Tregs. Secondly, the presence of CTLA-4 reduced the contact times of DO11.10 x CD4+CD25− Tconvs, but not DO11.10 x CD4+CD25+ Tregs, with OVA peptide presenting DCs in lymph nodes. Thirdly, blocking of CTLA-4 with anti–CTLA-4 Fab increased the contact times of Tconvs, but not Tregs with DCs. By contrast, the presence of CD28 in a comparison of Cd28−/− and Cd28+/+ DO11.10 T cells had no detectable effect on the contact times of either Tconvs or Tregs with DCs. Our findings identify for the first time a mechanistic explanation to account for CTLA-4–negative regulation of Tconv cells but not Tregs in immune responses.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 110-110
Author(s):  
Lequn Li ◽  
Rebecca Greenwald ◽  
Esther M. Lafuente ◽  
Dimitrios Tzachanis ◽  
Alla Berezovskaya ◽  
...  

Abstract Elucidating the mechanisms that regulate T cell activation and tolerance in vivo will provide insights into the maintenance of physiologic homeostasis and will facilitate development novel strategies for induction of transplantation tolerance. Transient activation of the small GTPase Rap1 is one of the physiologic consequences of TCR ligation and is mandatory for β1 and β2 integrin-mediated adhesion. In contrast, sustained increase of active Rap1 inhibits T cell activation and IL-2 transcription in vitro. In order to understand the role of Rap1 in the immune responses of the intact host we generated transgenic (Tg) mice, which express the active Rap1 mutant Rap1E63 in T cells. Rap1E63-Tg mice had no defects in thymocyte development or maturation. Rap1E63-Tg thymocytes were capable of activating Ras and Erk1/2 and, compared to wild type (WT) thymocytes, displayed enhanced LFA-1:ICAM-1-mediated adhesion and increased proliferation in response to anti-CD3. Surprisingly, although lymph node and splenic CD4+ cells from the Rap1E63-Tg mice also displayed increased LFA-1:ICAM-1-mediated adhesion, they had significantly impaired activation of Erk1/2 and dramatically reduced proliferation and IL-2 production in response to anti-CD3 and WT antigen presenting cells (APC). The defective responses of CD4+ T cells suggest that Rap1E63-Tg mice may have impaired helper function in vivo. To address this issue we immunized Rap1E63-Tg and WT mice with TNP-OVA, a T-cell dependent antigen. Total IgG, IgG1 and IgG2a were dramatically reduced, indicating that Rap1E63-Tg mice had a defect in immunoglobulin class switching, consistent with defective helper T cell-dependent B cell activation. Because these results suggest that Rap1E63-Tg CD4+ cells may have an anergic phenotype, we tested rechallenge responses. We immunized Rap1E63-Tg and WT mice with TNP-OVA in vivo and subsequently we rechallenged T cells in vitro with WT APC pulsed with OVA. Compared with WT, Rap1E63-Tg T cells had dramatically reduced proliferation, IFN- γ and IL-2 production on rechallenge, findings consistent with T cell anergy. Using suppression subtraction hybridization we determined that Rap1E63 induced mRNA expression of CD103, a marker that defines a potent subset of regulatory T cells (Treg). Strikingly, Rap1E63-Tg mice had a 5-fold increase of CD103+CD25+CD4+ Treg compared to WT mice. Rap1E63-Tg CD103+CD25+CD4+ Treg expressed the highest level of Foxp3 among all T cell subsets and had the most potent inhibitory effect on proliferation and IL-2 production when added into cultures of WT CD4+CD25− cells. Importantly, removal of the CD103+ cells significantly restored Erk1/2 activation, proliferation and IL-2 production of Rap1E63-Tg CD4+ T cells. Generation of CD103+ Treg occurs after thymic development and requires encounter of peripheral autoantigen. Consistent with this, differences in CD103+ Treg were detected only between lymph node and splenic cells and not between thymocytes from Rap1E63-Tg and WT mice. Since generation of CD103+ Treg depends on the strength of TCR signal, these results suggest that by enhancing adhesion, active Rap1 regulates the generation of Treg. Moreover, these results provide evidence that active Rap1 is a potent negative regulator of immune responses in vivo and have significant implications for the development of immune-based therapies geared towards tolerance induction.


1996 ◽  
Vol 184 (2) ◽  
pp. 753-758 ◽  
Author(s):  
X G Tai ◽  
Y Yashiro ◽  
R Abe ◽  
K Toyooka ◽  
C R Wood ◽  
...  

Costimulation mediated by the CD28 molecule plays an important role in optimal activation of T cells. However, CD28-deficient mice can mount effective T cell-dependent immune responses, suggesting the existence of other costimulatory systems. In a search for other costimulatory molecules on T cells, we have developed a monoclonal antibody (mAb) that can costimulate T cells in the absence of antigen-presenting cells (APC). The molecule recognized by this mAb, 9D3, was found to be expressed on almost all mature T cells and to be a protein of approximately 24 kD molecular mass. By expression cloning, this molecule was identified as CD9, 9D3 (anti-CD9) synergized with suboptimal doses of anti-CD3 mAb in inducing proliferation by virgin T cells. Costimulation was induced by independent ligation of CD3 and CD9, suggesting that colocalization of these two molecules is not required for T cell activation. The costimulation by anti-CD9 was as potent as that by anti-CD28. Moreover, anti-CD9 costimulated in a CD28-independent way because anti-CD9 equally costimulated T cells from the CD28-deficient as well as wild-type mice. Thus, these results indicate that CD9 serves as a molecule on T cells that can deliver a potent CD28-independent costimulatory signal.


2021 ◽  
Vol 478 (22) ◽  
pp. 3999-4004
Author(s):  
Lawrence P. Kane

Tim-3 is a transmembrane protein that is highly expressed on subsets of chronically stimulated CD4+ helper and CD8+ cytotoxic T cells, with more transient expression during acute activation and infection. Tim-3 is also constitutively expressed by multiple types of myeloid cells. Like other TIM family members, Tim-3 can bind to phosphatidylserine displayed by apoptotic cells, and this interaction has been shown to mediate uptake of such cells by dendritic cells and cross-presentation of antigens to CD8+ T cells. In contrast, how the recognition of PS by Tim-3 might regulate the function of Tim-3+ T cells is not known. In their recent paper, Lemmon and colleagues demonstrate for the first time that recognition of PS by Tim-3 leads to enhanced T cell activation.


2015 ◽  
Vol 36 (4) ◽  
pp. 1259-1273 ◽  
Author(s):  
Virginia Seiffart ◽  
Julia Zoeller ◽  
Robert Klopfleisch ◽  
Munisch Wadwa ◽  
Wiebke Hansen ◽  
...  

Background/Aims: IL10 is a key inhibitor of effector T cell activation and a mediator of intestinal homeostasis. In addition, IL10 has emerged as a key immunoregulator during infection with various pathogens, ameliorating the excessive T-cell responses that are responsible for much of the immunopathology associated with the infection. Because IL10 plays an important role in both intestinal homeostasis and infection, we studied the function of IL10 in infection-associated intestinal inflammation. Methods: Wildtype mice and mice deficient in CD4+ T cell-derived or regulatory T cells-derived IL10 were infected with the enteric pathogen Citrobacter (C.) rodentium and analyzed for the specific immune response and pathogloy in the colon. Results: We found that IL10 expression is upregulated in colonic tissue after infection with C. rodentium, especially in CD4+ T cells, macrophages and dendritic cells. Whereas the deletion of IL10 in regulatory T cells had no effect on C. rodentium induced colitis, infection of mice deficient in CD4+ T cell-derived IL10 exhibited faster clearance of the bacterial burden but worse colitis, crypt hyperplasia, and pathology than did WT mice. In addition, the depletion of CD4+ T cell-derived IL10 in infected animals was accompanied by an accelerated IFNγ and IL17 response in the colon. Conclusion: Thus, we conclude that CD4+ T cell-derived IL10 is strongly involved in the control of C. rodentium-induced colitis. Interference with this network could have implications for the treatment of infection-associated intestinal inflammation.


2017 ◽  
Vol 91 (23) ◽  
Author(s):  
Ulrike Sauermann ◽  
Antonia Radaelli ◽  
Nicole Stolte-Leeb ◽  
Katharina Raue ◽  
Massimiliano Bissa ◽  
...  

ABSTRACT An effective AIDS vaccine should elicit strong humoral and cellular immune responses while maintaining low levels of CD4+ T-cell activation to avoid the generation of target cells for viral infection. The present study investigated two prime-boost regimens, both starting vaccination with single-cycle immunodeficiency virus, followed by two mucosal boosts with either recombinant adenovirus (rAd) or fowlpox virus (rFWPV) expressing SIVmac239 or SIVmac251 gag/pol and env genes, respectively. Finally, vectors were switched and systemically administered to the reciprocal group of animals. Only mucosal rFWPV immunizations followed by systemic rAd boost significantly protected animals against a repeated low-dose intrarectal challenge with pathogenic SIVmac251, resulting in a vaccine efficacy (i.e., risk reduction per exposure) of 68%. Delayed viral acquisition was associated with higher levels of activated CD8+ T cells and Gag-specific gamma interferon (IFN-γ)-secreting CD8+ cells, low virus-specific CD4+ T-cell responses, and low Env antibody titers. In contrast, the systemic rFWPV boost induced strong virus-specific CD4+ T-cell activity. rAd and rFWPV also induced differential patterns of the innate immune responses, thereby possibly shaping the specific immunity. Plasma CXCL10 levels after final immunization correlated directly with virus-specific CD4+ T-cell responses and inversely with the number of exposures to infection. Also, the percentage of activated CD69+ CD8+ T cells correlated with the number of exposures to infection. Differential stimulation of the immune response likely provided the basis for the diverging levels of protection afforded by the vaccine regimen. IMPORTANCE A failed phase II AIDS vaccine trial led to the hypothesis that CD4+ T-cell activation can abrogate any potentially protective effects delivered by vaccination or promote acquisition of the virus because CD4+ T helper cells, required for an effective immune response, also represent the target cells for viral infection. We compared two vaccination protocols that elicited similar levels of Gag-specific immune responses in rhesus macaques. Only the animal group that had a low level of virus-specific CD4+ T cells in combination with high levels of activated CD8+ T cells was significantly protected from infection. Notably, protection was achieved despite the lack of appreciable Env antibody titers. Moreover, we show that both the vector and the route of immunization affected the level of CD4+ T-cell responses. Thus, mucosal immunization with FWPV-based vaccines should be considered a potent prime in prime-boost vaccination protocols.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 951-951
Author(s):  
Ettore Biagi ◽  
Giampietro Dotti ◽  
Eric Yvon ◽  
Raphael Rousseau ◽  
Edward Lee ◽  
...  

Abstract CD40 ligand is an accessory signal for T-cell activation and can overcome T-cell anergy. The OX40-OX40 ligand pathway is involved in the subsequent expansion of memory T cells. We expressed both human CD40L and OX40L on B-Chronic Lymphocytic Leukemia (B-CLL) cells, by exploiting the phenomenon of molecular transfer from fibroblasts engineered to over-express both of these TNF-receptor superfamily members. We analyzed the effects of the modified B-CLL cells on the number, phenotype and cytotoxic function of autologous T cells in seven B-CLL patients. Transfer of CD40L and OX40L to B-CLL cells was observed in all patients (mean value from 1% pre to 76% post for CD40L; from 0.7% pre to 88% post for OX40L). Subsequent up-regulation of the costimulatory molecules CD80 (B7-1) and CD86 (B7-2) was obtained after engagement of the endogenous CD40 receptor on B-CLL by the transferred CD40L molecules (mean value from 8% pre to 64% post for CD80; from 36% pre to 95% post for CD86). Co-culture of modified and unmodified B-CLL cells with autologous T cells revealed profound differences in the immune responses they induced. With unmodified B-CLL cells, or cells expressing either CD40L or OX40L individually, less than a 10-fold expansion of autologous T cells was observed, with a <100-fold expansion in tumor reactive T cells (measured by IFN-gamma Elispot with autologous B-CLL cells as stimulators, and allogeneic B-CLL cells as controls). By contrast, co-culture with B-CLL cells expressing both CD40L and OX40L induced a >40 fold expansion of autologous T cells - including both CD8+ T cells and CD4+ T cells with a Th1 pattern of cytokine release - and a >2500-fold increase in leukemia-reactive T cells. These expanded T cells were also directly cytotoxic to B-CLL targets, producing a mean 48% B-CLL killing at an E:T ratio of 10:1. A proportion of these tumor-reactive CD8+ T cells were specific for survivin, a B-CLL associated tumor antigen. Hence the combination of CD40L and OX40L expression by B-CLL cells allows generation of potent immune responses to B-CLL, which may be exploitable either by using active immunization with CD40L/OX40L-modified tumor cells or by adoptive immunotherapy with CD40L/OX40L generated tumor-reactive T cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3891-3891
Author(s):  
Zwi N. Berneman ◽  
Nathalie Cools ◽  
Viggo F.I. Van Tendeloo ◽  
Marc Lenjou ◽  
Griet Nijs ◽  
...  

Abstract Dendritic cells (DC), the professional antigen presenting cells of the immune system, exert important functions both in induction of T cell immunity as well as of tolerance. Previously, it was accepted that the main function of immature DC (iDC) in their in vivo steady state condition is to maintain peripheral tolerance to self-antigens and that these iDC mature upon encounter of so-called danger signals and subsequently promote T cell immunity. However, a growing body of experimental evidence now indicates that traditional DC maturation can no longer be used to distinguish between tolerogenic and immunogenic properties of DC. In this study, we compared the in vitro stimulatory capacity of immature DC (iDC), cytokine cocktail-matured DC (CC-mDC) and poly I:C-matured DC (pIC-mDC) in the absence and presence of antigen. All investigated DC types could induce at least 2 subsets of regulatory T cells. We observed a significant increase in both the number of functionally suppressive transforming growth factor (TGF)-beta+ interleukin (IL)-10+ T cells as well as of CD4+CD25+FOXP3+ T cells within DC/T cell co-cultures as compared to T cell cultures without DC. The induction of these regulatory T cells correlates with in vitro T cell non-responsiveness after co-culture with iDC and CC-mDC, while stimulation with pIC-mDC resulted in reproducible cytomegalovirus pp65 or influenza M1 matrix peptide-specific T cell activation as compared to control cultures in the absence of DC. In addition, the T cell non-responsiveness after stimulation with iDC was shown to be mediated by TGF-beta and IL-10. Moreover, the suppressive capacity of CD4+ T cells activated by iDC and CC-mDC was shown to be transferable when these CD4+ T cells were added to an established T cell response. In contrast, addition of CD4+ T cells stimulated by pIC-mDC made responder T cells refractory to their suppressive activity. In conclusion, we hypothesize that DC have a complementary role in inducing both regulatory T cells and effector T cells, where the final result of antigen-specific T cell activation will depend on the activation state of the DC. This emphasizes the need for proper DC activation when T cell immunity is the desired effect, especially when used in clinical trials.


AIDS ◽  
2011 ◽  
Vol 25 (5) ◽  
pp. 585-593 ◽  
Author(s):  
Ingrid Karlsson ◽  
Benoît Malleret ◽  
Patricia Brochard ◽  
Benoît Delache ◽  
Julien Calvo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document