scholarly journals Functional connectivity in task-negative network of the Deaf: effects of sign language experience

Author(s):  
Evie Malaia ◽  
Thomas M Talavage ◽  
Ronnie B Wilbur

Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain’s anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud, et al., 2012 inter alia). We report the first investigation of the task-negative network in Deaf signers and its functional connectivity – the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG), but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal.

2014 ◽  
Author(s):  
Evie Malaia ◽  
Thomas M Talavage ◽  
Ronnie B Wilbur

Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain’s anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud, et al., 2012 inter alia). We report the first investigation of the task-negative network in Deaf signers and its functional connectivity – the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG), but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lu Jin ◽  
Chuzhong Li ◽  
Yazhuo Zhang ◽  
Taoyang Yuan ◽  
Jianyou Ying ◽  
...  

BackgroundPrior investigations of language functions have focused on the response profiles of particular brain regions. However, the specialized and static view of language processing does not explain numerous observations of functional recovery following brain surgery. To investigate the dynamic alterations of functional connectivity (FC) within language network (LN) in glioma patients, we explored a new flexible model based on the neuroscientific hypothesis of core-periphery organization in LN.MethodsGroup-level LN mapping was determined from 109 glioma patients and forty-two healthy controls (HCs) using independent component analysis (ICA). FC and mean network connectivity (mNC: l/rFCw, FCb, and FCg) were compared between patients and HCs. Correlations between mNC and tumor volume (TV) were calculated.ResultsWe identified ten separate LN modules from ICA. Compared to HCs, glioma patients showed a significant reduction in language network functional connectivity (LNFC), with a distinct pattern modulated by tumor position. Left hemisphere gliomas had a broader impact on FC than right hemisphere gliomas, with more reduced edges away from tumor sites (p=0.011). mNC analysis revealed a significant reduction in all indicators of FC except for lFCw in right hemisphere gliomas. These alterations were associated with TV in a double correlative relationship depending on the tumor position across hemispheres.ConclusionOur findings emphasize the importance of considering the modulatory effects of core-periphery mechanisms from a network perspective. Preoperative evaluation of changes in LN caused by gliomas could provide the surgeon a reference to optimize resection while maintaining functional balance.


Author(s):  
Angela D. Friederici ◽  
Noam Chomsky

An adequate description of the neural basis of language processing must consider the entire network both with respect to its structural white matter connections and the functional connectivities between the different brain regions as the information has to be sent between different language-related regions distributed across the temporal and frontal cortex. This chapter discusses the white matter fiber bundles that connect the language-relevant regions. The chapter is broken into three sections. In the first, we look at the white matter fiber tracts connecting the language-relevant regions in the frontal and temporal cortices; in the second, the ventral and dorsal pathways in the right hemisphere that connect temporal and frontal regions; and finally in the third, the two syntax-relevant and (at least) one semantic-relevant neuroanatomically-defined networks that sentence processing is based on. From this discussion, it becomes clear that online language processing requires information transfer via the long-range white matter fiber pathways that connect the language-relevant brain regions within each hemisphere and between hemispheres.


2002 ◽  
Vol 14 (7) ◽  
pp. 1064-1075 ◽  
Author(s):  
Mairéad MacSweeney ◽  
Bencie Woll ◽  
Ruth Campbell ◽  
Gemma A. Calvert ◽  
Philip K. McGuire ◽  
...  

In all signed languages used by deaf people, signs are executed in “sign space” in front of the body. Some signed sentences use this space to map detailed “real-world” spatial relationships directly. Such sentences can be considered to exploit sign space “topographically.” Using functional magnetic resonance imaging, we explored the extent to which increasing the topographic processing demands of signed sentences was reflected in the differential recruitment of brain regions in deaf and hearing native signers of the British Sign Language. When BSL signers performed a sentence anomaly judgement task, the occipito-temporal junction was activated bilaterally to a greater extent for topographic than nontopo-graphic processing. The differential role of movement in the processing of the two sentence types may account for this finding. In addition, enhanced activation was observed in the left inferior and superior parietal lobules during processing of topographic BSL sentences. We argue that the left parietal lobe is specifically involved in processing the precise configuration and location of hands in space to represent objects, agents, and actions. Importantly, no differences in these regions were observed when hearing people heard and saw English translations of these sentences. Despite the high degree of similarity in the neural systems underlying signed and spoken languages, exploring the linguistic features which are unique to each of these broadens our understanding of the systems involved in language comprehension.


2017 ◽  
Vol 114 (50) ◽  
pp. 13278-13283 ◽  
Author(s):  
Jarod L. Roland ◽  
Abraham Z. Snyder ◽  
Carl D. Hacker ◽  
Anish Mitra ◽  
Joshua S. Shimony ◽  
...  

Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity.


10.1038/nn775 ◽  
2001 ◽  
Vol 5 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Aaron J. Newman ◽  
Daphne Bavelier ◽  
David Corina ◽  
Peter Jezzard ◽  
Helen J. Neville

2021 ◽  
Author(s):  
Galit Agmon ◽  
Paz Har-Shai Yahav ◽  
Michal Ben-Shachar ◽  
Elana Zion Golumbic

AbstractDaily life is full of situations where many people converse at the same time. Under these noisy circumstances, individuals can employ different listening strategies to deal with the abundance of sounds around them. In this fMRI study we investigated how applying two different listening strategies – Selective vs. Distributed attention – affects the pattern of neural activity. Specifically, in a simulated ‘cocktail party’ paradigm, we compared brain activation patterns when listeners attend selectively to only one speaker and ignore all others, versus when they distribute their attention and attempt to follow two or four speakers at the same time. Results indicate that the two attention types activate a highly overlapping, bilateral fronto-temporal-parietal network of functionally connected regions. This network includes auditory association cortex (bilateral STG/STS) and higher-level regions related to speech processing and attention (bilateral IFG/insula, right MFG, left IPS). Within this network, responses in specific areas were modulated by the type of attention required. Specifically, auditory and speech-processing regions exhibited higher activity during Distributed attention, whereas fronto-parietal regions were activated more strongly during Selective attention. This pattern suggests that a common perceptual-attentional network is engaged when dealing with competing speech-inputs, regardless of the specific task at hand. At the same time, local activity within nodes of this network varies when implementing different listening strategies, reflecting the different cognitive demands they impose. These results nicely demonstrate the system’s flexibility to adapt its internal computations to accommodate different task requirements and listener goals.Significance StatementHearing many people talk simultaneously poses substantial challenges for the human perceptual and cognitive systems. We compared neural activity when listeners applied two different listening strategy to deal with these competing inputs: attending selectively to one speaker vs. distributing attention among all speakers. A network of functionally connected brain regions, involved in auditory processing, language processing and attentional control was activated when applying both attention types. However, activity within this network was modulated by the type of attention required and the number of competing speakers. These results suggest a common ‘attention to speech’ network, providing the computational infrastructure to deal effectively with multi-speaker input, but with sufficient flexibility to implement different prioritization strategies and to adapt to different listener goals.


1984 ◽  
Vol 4 (4) ◽  
pp. 484-499 ◽  
Author(s):  
Barry Horwitz ◽  
Ranjan Duara ◽  
Stanley I. Rapoport

We use a correlational analysis of regional metabolic rates to characterize relations among different brain regions. Starting with rates of local glucose metabolism (rCMRglc) obtained by positron emission tomography using [18F]fluorodeoxyglucose, we propose that pairs of brain regions whose rCMRglc values are significantly correlated are functionally associated, and that the strength of the association is proportional to the magnitude of the correlation coefficient. Partial correlation coefficients, controlling for whole brain glucose metabolism, are used in the analysis. We also introduce a graphical technique to display simultaneously all the correlations, allowing us to examine patterns of relations among them. The method was applied to 40 very healthy males under conditions of reduced auditory and visual inputs (the “resting state”). Dividing the brain into 59 regions, and keeping only those partial correlation coefficients significant to p < 0.01, we found the following: (a) All regions were significantly correlated with their contralateral homologues. For the most part, the largest partial correlation coefficients were between homologous brain regions. (b) Generally, the pattern of significant correlations between any two lobes in the left hemisphere did not differ statistically from the corresponding pattern in the right hemisphere. (c) Strong correlations were observed between primary somatosensory areas and premotor association areas. Correlations between these association areas and primary visual and auditory regions were not statistically significant. (d) Significant correlations between inferior occipital and temporal areas were found. Metabolic rates in the superior part of the occipital lobe were not correlated significantly with metabolic rates in regions of the temporal lobe, nor with metabolism in the parietal lobe. (e) As a whole, there were numerous correlations among frontal and parietal lobe regions, on the one hand, and among temporal and occipital lobe regions, on the other, but few statistically significant correlations between these two domains. We relate our results to various aspects of known brain anatomy, physiology, and cognitive functioning.


2011 ◽  
Vol 91 (4) ◽  
pp. 1357-1392 ◽  
Author(s):  
Angela D. Friederici

Language processing is a trait of human species. The knowledge about its neurobiological basis has been increased considerably over the past decades. Different brain regions in the left and right hemisphere have been identified to support particular language functions. Networks involving the temporal cortex and the inferior frontal cortex with a clear left lateralization were shown to support syntactic processes, whereas less lateralized temporo-frontal networks subserve semantic processes. These networks have been substantiated both by functional as well as by structural connectivity data. Electrophysiological measures indicate that within these networks syntactic processes of local structure building precede the assignment of grammatical and semantic relations in a sentence. Suprasegmental prosodic information overtly available in the acoustic language input is processed predominantly in a temporo-frontal network in the right hemisphere associated with a clear electrophysiological marker. Studies with patients suffering from lesions in the corpus callosum reveal that the posterior portion of this structure plays a crucial role in the interaction of syntactic and prosodic information during language processing.


Sign in / Sign up

Export Citation Format

Share Document