scholarly journals Investigation of the interplay between SKP2, CDT1 and Geminin in cancer cells

Author(s):  
Andrea Ballabeni ◽  
Raffaella Zamponi

Geminin has a dual role in the regulation of DNA replication: it inhibits replication factor CDT1 activity during the G2 phase of the cell cycle and promotes its accumulation at the G2/M transition. In this way Geminin prevents DNA re-replication during G2 phase and ensures that DNA replication is efficiently executed in the next S phase. CDT1 was shown to associate with SKP2, the substrate recognition factor of the SCF ubiquitin ligase complex. We investigated the interplay between these three proteins in cancer cell lines. We show that Geminin, CDT1 and SKP2 could possibly form a complex and propose the putative regions of CDT1 and Geminin involved in the binding. We also show that, despite the physical interaction, SKP2 depletion does not substantially affect CDT1 and Geminin protein levels. Moreover, we show that while Geminin and CDT1 levels fluctuate, SKP2 levels, differently than in normal cells, are almost steady during the cell cycle of the tested cancer cells.

2015 ◽  
Author(s):  
Andrea Ballabeni ◽  
Raffaella Zamponi

Geminin has a dual role in the regulation of DNA replication: it inhibits replication factor CDT1 activity during the G2 phase of the cell cycle and promotes its accumulation at the G2/M transition. In this way Geminin prevents DNA re-replication during G2 phase and ensures that DNA replication is efficiently executed in the next S phase. CDT1 was shown to associate with SKP2, the substrate recognition factor of the SCF ubiquitin ligase complex. We investigated the interplay between these three proteins in cancer cell lines. We show that Geminin, CDT1 and SKP2 could possibly form a complex and propose the putative regions of CDT1 and Geminin involved in the binding. We also show that, despite the physical interaction, SKP2 depletion does not substantially affect CDT1 and Geminin protein levels. Moreover, we show that while Geminin and CDT1 levels fluctuate, SKP2 levels, differently than in normal cells, are almost steady during the cell cycle of the tested cancer cells.


Author(s):  
Jiayan Xie ◽  
Yimei Jin ◽  
Guang Wang

AbstractAs the largest family of E3 ligases, the Skp1-cullin 1-F-box (SCF) E3 ligase complex is comprised of Cullins, Skp1 and F-box proteins. And the SCF E3 ubiquitin ligases play an important role in regulating critical cellular processes, which promote degradation of many cellular proteins, including signal transducers, cell cycle regulators, and transcription factors. We review the biological roles of the SCF ubiquitin-ligase complex in gametogenesis, oocyte-to-embryo transition, embryo development and the regulation for estrogen and progestin. We find that researches about the SCF ubiquitin-ligase complex at the beginning of life are not comprehensive, thus more in-depth researches will promote its eventual clinical application.


2000 ◽  
Vol 20 (20) ◽  
pp. 7613-7623 ◽  
Author(s):  
Claus Storgaard Sørensen ◽  
Claudia Lukas ◽  
Edgar R. Kramer ◽  
Jan-Michael Peters ◽  
Jiri Bartek ◽  
...  

ABSTRACT Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccharomyces cerevisiae andDrosophila spp., triggers exit from mitosis and during G1 prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference with the APC-Cdh1 dissociation at the G1/S transition resulted in an inability to accumulate a surprisingly broad range of critical mitotic regulators including cyclin B1, cyclin A, Plk1, Pds1, mitosin (CENP-F), Aim1, and Cdc20. Unexpectedly, although constitutively assembled APC-Cdh1 also delayed G1/S transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27Kip1 cyclin-dependent kinase inhibitor. Consequently, failure to inactivate APC-Cdh1 beyond the G1/S transition not only inhibited productive cell division but also supported slow but uninterrupted DNA replication, precluding S-phase exit and causing massive overreplication of the genome. Our data suggest that timely oscillation of the APC-Cdh1 ubiquitin ligase activity represents an essential step in coordinating DNA replication with cell division and that failure of mechanisms regulating association of APC with the Cdh1 activating subunit can undermine genomic stability in mammalian cells.


2018 ◽  
Author(s):  
Sara Priego Moreno ◽  
Rebecca M. Jones ◽  
Divyasree Poovathumkadavil ◽  
Agnieszka Gambus

ABSTRACTRecent years have brought a breakthrough in our understanding of the process of eukaryotic DNA replication termination. We have shown that the process of replication machinery (replisome) disassembly at the termination of DNA replication forks in S-phase of the cell cycle is driven through polyubiquitylation of one of the replicative helicase subunits Mcm7. Our previous work in C.elegans embryos suggested also an existence of a back-up pathway of replisome disassembly in mitosis. Here we show, that in Xenopus laevis egg extract, any replisome retained on chromatin after S-phase is indeed removed from chromatin in mitosis. This mitotic disassembly pathway depends on formation of K6 and K63 ubiquitin chains on Mcm7 by TRAIP ubiquitin ligase and activity of p97/VCP protein segregase. The mitotic replisome pathway is therefore conserved through evolution in higher eukaryotes. However, unlike in lower eukaryotes it does not require SUMO modifications. This process can also remove any helicases from chromatin, including “active” stalled ones, indicating a much wider application of this pathway than just a “back-up” for terminated helicases.


2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Yilin Fan ◽  
Marielle S. Köberlin ◽  
Nalin Ratnayeke ◽  
Chad Liu ◽  
Madhura Deshpande ◽  
...  

After two converging DNA replication forks meet, active replisomes are disassembled and unloaded from chromatin. A key process in replisome disassembly is the unloading of CMG helicases (CDC45–MCM–GINS), which is initiated in Caenorhabditis elegans and Xenopus laevis by the E3 ubiquitin ligase CRL2LRR1. Here, we show that human cells lacking LRR1 fail to unload CMG helicases and accumulate increasing amounts of chromatin-bound replisome components as cells progress through S phase. Markedly, we demonstrate that the failure to disassemble replisomes reduces the rate of DNA replication increasingly throughout S phase by sequestering rate-limiting replisome components on chromatin and blocking their recycling. Continued binding of CMG helicases to chromatin during G2 phase blocks mitosis by activating an ATR-mediated G2/M checkpoint. Finally, we provide evidence that LRR1 is an essential gene for human cell division, suggesting that CRL2LRR1 enzyme activity is required for the proliferation of cancer cells and is thus a potential target for cancer therapy.


2003 ◽  
Vol 23 (15) ◽  
pp. 5165-5173 ◽  
Author(s):  
Judit Garriga ◽  
Sabyasachi Bhattacharya ◽  
Joaquim Calbó ◽  
Renée M. Marshall ◽  
May Truongcao ◽  
...  

ABSTRACT CDK9 is a CDC2-related kinase and the catalytic subunit of the positive-transcription elongation factor b and the Tat-activating kinase. It has recently been reported that CDK9 is a short-lived protein whose levels are regulated during the cell cycle by the SCFSKP2 ubiquitin ligase complex (R. E. Kiernan et al., Mol. Cell. Biol. 21:7956-7970, 2001). The results presented here are in contrast to those observations. CDK9 protein levels remained unchanged in human cells entering and progressing through the cell cycle from G0, despite dramatic changes in SKP2 expression. CDK9 levels also remained unchanged in cells exiting from mitosis and progressing through the next cell cycle. Similarly, the levels of CDK9 protein did not change as cells exited the cell cycle and differentiated along various lineages. In keeping with these observations, the kinase activity associated with CDK9 was found to not be regulated during the cell cycle. We have also found that endogenous CDK9 is a very stable protein with a half-life (t 1/2) of 4 to 7 h, depending on the cell type. In contrast, when CDK9 is overexpressed, it is not stabilized and is rapidly degraded, with a t 1/2 of less than 1 h, depending on the level of expression. Treatment of cells with proteasome inhibitors blocked the degradation of short-lived proteins, such as p27, but did not affect the expression of endogenous CDK9. Ectopic overexpression of SKP2 led to reduction of p27 protein levels but had no effect on the expression of endogenous CDK9. Finally, downregulation of endogenous SKP2 gene expression by interfering RNA had no effect on CDK9 protein levels, whereas p27 protein levels increased dramatically. Therefore, the SCFSKP2 ubiquitin ligase does not regulate CDK9 expression in a cell cycle-dependent manner.


1987 ◽  
Vol 7 (5) ◽  
pp. 1933-1937 ◽  
Author(s):  
J J Carrino ◽  
V Kueng ◽  
R Braun ◽  
T G Laffler

During the S phase of the cell cycle, histone gene expression and DNA replication are tightly coupled. In mitotically synchronous plasmodia of the myxomycete Physarum polycephalum, which has no G1 phase, histone mRNA synthesis begins in mid-G2 phase. Although histone gene transcription is activated in the absence of significant DNA synthesis, our data demonstrate that histone gene expression became tightly coupled to DNA replication once the S phase began. There was a transition from the replication-independent phase to the replication-dependent phase of histone gene expression. During the first phase, histone mRNA synthesis appears to be under direct cell cycle control; it was not coupled to DNA replication. This allowed a pool of histone mRNA to accumulate in late G2 phase, in anticipation of future demand. The second phase began at the end of mitosis, when the S phase began, and expression became homeostatically coupled to DNA replication. This homeostatic control required continuing protein synthesis, since cycloheximide uncoupled transcription from DNA synthesis. Nuclear run-on assays suggest that in P. polycephalum this coupling occurs at the level of transcription. While histone gene transcription appears to be directly switched on in mid-G2 phase and off at the end of the S phase by cell cycle regulators, only during the S phase was the level of transcription balanced with the rate of DNA synthesis.


1987 ◽  
Vol 7 (5) ◽  
pp. 1933-1937
Author(s):  
J J Carrino ◽  
V Kueng ◽  
R Braun ◽  
T G Laffler

During the S phase of the cell cycle, histone gene expression and DNA replication are tightly coupled. In mitotically synchronous plasmodia of the myxomycete Physarum polycephalum, which has no G1 phase, histone mRNA synthesis begins in mid-G2 phase. Although histone gene transcription is activated in the absence of significant DNA synthesis, our data demonstrate that histone gene expression became tightly coupled to DNA replication once the S phase began. There was a transition from the replication-independent phase to the replication-dependent phase of histone gene expression. During the first phase, histone mRNA synthesis appears to be under direct cell cycle control; it was not coupled to DNA replication. This allowed a pool of histone mRNA to accumulate in late G2 phase, in anticipation of future demand. The second phase began at the end of mitosis, when the S phase began, and expression became homeostatically coupled to DNA replication. This homeostatic control required continuing protein synthesis, since cycloheximide uncoupled transcription from DNA synthesis. Nuclear run-on assays suggest that in P. polycephalum this coupling occurs at the level of transcription. While histone gene transcription appears to be directly switched on in mid-G2 phase and off at the end of the S phase by cell cycle regulators, only during the S phase was the level of transcription balanced with the rate of DNA synthesis.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 97
Author(s):  
Aneliya Ivanova ◽  
Aleksandar Atemin ◽  
Sonya Uzunova ◽  
Georgi Danovski ◽  
Radoslav Aleksandrov ◽  
...  

Cells have evolved elaborate mechanisms to regulate DNA replication machinery and cell cycles in response to DNA damage and replication stress in order to prevent genomic instability and cancer. The E3 ubiquitin ligase SCFDia2 in S. cerevisiae is involved in the DNA replication and DNA damage stress response, but its effect on cell growth is still unclear. Here, we demonstrate that the absence of Dia2 prolongs the cell cycle by extending both S- and G2/M-phases while, at the same time, activating the S-phase checkpoint. In these conditions, Ctf4—an essential DNA replication protein and substrate of Dia2—prolongs its binding to the chromatin during the extended S- and G2/M-phases. Notably, the prolonged cell cycle when Dia2 is absent is accompanied by a marked increase in cell size. We found that while both DNA replication inhibition and an absence of Dia2 exerts effects on cell cycle duration and cell size, Dia2 deficiency leads to a much more profound increase in cell size and a substantially lesser effect on cell cycle duration compared to DNA replication inhibition. Our results suggest that the increased cell size in dia2∆ involves a complex mechanism in which the prolonged cell cycle is one of the driving forces.


Genetics ◽  
2001 ◽  
Vol 158 (4) ◽  
pp. 1545-1556 ◽  
Author(s):  
Laura A Lee ◽  
Lisa K Elfring ◽  
Giovanni Bosco ◽  
Terry L Orr-Weaver

Abstract The early cell cycles of Drosophila embryogenesis involve rapid oscillations between S phase and mitosis. These unique S-M cycles are driven by maternal stockpiles of components necessary for DNA replication and mitosis. Three genes, pan gu (png), plutonium (plu), and giant nuclei (gnu) are required to control the cell cycle specifically at the onset of Drosophila development by inhibiting DNA replication and promoting mitosis. PNG is a protein kinase that is in a complex with PLU. We employed a sensitized png mutant phenotype to screen for genes that when reduced in dosage would dominantly suppress or enhance png. We screened deficiencies covering over 50% of the autosomes and identified both enhancers and suppressors. Mutations in eIF-5A and PP1 87B dominantly suppress png. Cyclin B was shown to be a key PNG target. Mutations in cyclin B dominantly enhance png, whereas png is suppressed by cyclin B overexpression. Suppression occurs via restoration of Cyclin B protein levels that are decreased in png mutants. The plu and gnu phenotypes are also suppressed by cyclin B overexpression. These studies demonstrate that a crucial function of PNG in controlling the cell cycle is to permit the accumulation of adequate levels of Cyclin B protein.


Sign in / Sign up

Export Citation Format

Share Document