scholarly journals COVID-19 In Silico Drug with Zingiber officinale Natural Product Compound Library Targeting the Mpro Protein

2021 ◽  
Vol 25 (3) ◽  
2018 ◽  
Vol 72 ◽  
pp. 136-149 ◽  
Author(s):  
Pascal Amoa Onguéné ◽  
Conrad V. Simoben ◽  
Ghislain W. Fotso ◽  
Kerstin Andrae-Marobela ◽  
Sami A. Khalid ◽  
...  

2020 ◽  
Vol 15 (2) ◽  
pp. 154-164 ◽  
Author(s):  
Ijaz Muhammad ◽  
Noor Rahman ◽  
Gul E. Nayab ◽  
Sadaf Niaz ◽  
Mohibullah Shah ◽  
...  

Background: Cancer is characterized by overexpression of p53 associated proteins, which down-regulate P53 signaling pathway. In cancer therapy, p53 activity can be restored by inhibiting the interaction of MDMX (2N0W) and MDM2 (4JGR) proteins with P53 protein. Objective: In the current, study in silico approaches were adapted to use a natural product as a source of cancer therapy. Methods: In the current study in silico approaches were adapted to use a natural product as a source of cancer therapy. For in silico studies, Chemdraw and Molecular Operating Environment were used for structure drawing and molecular docking, respectively. Flavonoids isolated from D. carota were docked with cancerous proteins. Result: Based on the docking score analysis, we found that compound 7 was the potent inhibitor of both cancerous proteins and can be used as a potent molecule for inhibition of 2N0W and 4JGR interaction with p53. Conclusion: Thus the compound 7 can be used for the revival of p53 signaling pathway function however, intensive in vitro and in vivo experiments are required to prove the in silico analysis.


Author(s):  
Saranyadevi Subburaj ◽  
Tanvi Anand Nagrale ◽  
Mohd. Mustufa Khan ◽  
Nivya James ◽  
Ramanathan Karuppasamy ◽  
...  

2002 ◽  
Vol 8 (2) ◽  
pp. 75-87 ◽  
Author(s):  
Ana C. V. deCarvalho ◽  
Chi P. Ndi ◽  
Apollinaire Tsopmo ◽  
Pierre Tane ◽  
Johnson Ayafor ◽  
...  

2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 46-46
Author(s):  
M. Li ◽  
N. Zheng ◽  
F. Wen ◽  
Y. Zhang ◽  
S. Li ◽  
...  

2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Christopher C. Presley ◽  
L. Harinantenaina Rakotondraibe ◽  
Peggy J. Brodie ◽  
Martin W. Callmander ◽  
Richard Randrianaivo ◽  
...  

Antiproliferative bioassay-guided fractionation of the ethanolic extract of the endemic Madagascan plant Metaporana sericosepala led to the first natural product isolation of a butenolide diterpene, which was synthesized during an anti-inflammatory study in 1988. The structure of the compound was elucidated as 3-homofarnesyl-4-hydroxybutenolide (1) by analysis of its spectroscopic data, including 1D- and 2D-NMR data and chemical evidence. The once synthetic compound can now also be considered as a natural product. Compound 1 had modest antiproliferative activity towards the A2780 ovarian cancer cell line with an IC50 value of 8 μM.


2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095326
Author(s):  
Jai-Sing Yang ◽  
Jo-Hua Chiang ◽  
Shih‑Chang Tsai ◽  
Yuan-Man Hsu ◽  
Da-Tian Bau ◽  
...  

The coronavirus disease 2019 (COVID‐19) outbreak caused by the 2019 novel coronavirus (2019-nCOV) is becoming increasingly serious. In March 2019, the Food and Drug Administration (FDA) designated remdesivir for compassionate use to treat COVID-19. Thus, the development of novel antiviral agents, antibodies, and vaccines against COVID-19 is an urgent research subject. Many laboratories and research organizations are actively investing in the development of new compounds for COVID-19. Through in silico high-throughput virtual screening, we have recently identified compounds from the compound library of Natural Products Research Laboratories (NPRL) that can bind to COVID-19 3Lpro polyprotein and block COVID-19 3Lpro activity through in silico high-throughput virtual screening. Curcuminoid derivatives (including NPRL334, NPRL339, NPRL342, NPRL346, NPRL407, NPRL415, NPRL420, NPRL472, and NPRL473) display strong binding affinity to COVID-19 3Lpro polyprotein. The binding site of curcuminoid derivatives to COVID-19 3Lpro polyprotein is the same as that of the FDA-approved human immunodeficiency virus protease inhibitor (lopinavir) to COVID-19 3Lpro polyprotein. The binding affinity of curcuminoid derivatives to COVID-19 3Lpro is stronger than that of lopinavir and curcumin. Among curcuminoid derivatives, NPRL-334 revealed the strongest binding affinity to COVID-19 3Lpro polyprotein and is speculated to have an anti-COVID-19 effect. In vitro and in vivo ongoing experiments are currently underway to confirm the present findings. This study sheds light on the drug design for COVID-19 3Lpro polyprotein. Basing on lead compound development, we provide new insights on inhibiting COVID-19 attachment to cells, reducing COVID-19 infection rate and drug side effects, and increasing therapeutic success rate.


2020 ◽  
Author(s):  
Dibakar Goswami ◽  
Mukesh Kumar ◽  
Sunil K. Ghosh ◽  
Amit Das

SARS-CoV-2 or COVID-19 has caused more than 10,00,000 infections and ~55,000 deaths worldwide spanning over 203 countries, and the numbers are exponentially increasing. Due to urgent need of treating the SARS infection, many approved, pre-clinical, anti-viral, anti-malarial and anti-SARS drugs are being administered to patients. SARS-CoV-2 papain-like protease (PLpro) has a protease domain which cleaves the viral polyproteins a/b, necessary for its survival and replication, and is one of the drug target against SARS-CoV-2. 3D structures of SARS-CoV-2 PLpro were built by homology modelling. Two models having partially open and closed conformations were used in our study. Virtual screening of natural product compounds was performed. We prepared an in house library of compounds found in rhizomes, Alpinia officinarum, ginger and curcuma, and docked them into the solvent accessible S3-S4 pocket of PLpro. Eight compounds from Alpinia officinarum and ginger bind with high in silico affinity to closed PLpro conformer, and hence are potential SARS-CoV-2 PLpro inhibitors. Our study reveal new lead compounds targeting SARS-CoV-2. Further structure based modifications or extract formulations of these compounds can lead to highly potent inhibitors to treat SARS-CoV-2 infections.<br>


Sign in / Sign up

Export Citation Format

Share Document