scholarly journals Analisis Glimepirida Dalam Plasma Tikus

2006 ◽  
Vol 3 (1) ◽  
Author(s):  
Yahdiana Harahap ◽  
Umar Mansur ◽  
Theresia Sinandang

The aim of this research is to find the method for analyze glimepiride and itÂ’s metabolite. Glimepiride is the second generation of antidiabetic oral from the sulphonyl urea that works by stimulating the insulin secretion from beta cells of pancreas. Glimepiride is isolated from plasma the using chloroform. Using the high performance liquid chromatography method which include C18 reversed phase column, using mixture of methanol:water (50:50, v/v) as a mobile phase, flow rate 1.0 ml/minutes, detection at wavelenght 228 nm with photo diode array detector gives retention times of glimepiride in 17 minutes without any interference from endogen component of plasma and from itÂ’s metabolite. Linearity with added internal standard gliclazide was established for the range concentration 100-1000 ng/ml with coefficient of correlation (r) is 0.9977 and give the limit of quantitation of glimepiride in 50 ng/ml. The results of validation method fulfilled for the given criterias.

Planta Medica ◽  
2018 ◽  
Vol 84 (15) ◽  
pp. 1118-1126 ◽  
Author(s):  
Izabela Nawrot-Hadzik ◽  
Sebastian Granica ◽  
Krzysztof Domaradzki ◽  
Łukasz Pecio ◽  
Adam Matkowski

AbstractGiant knotweeds of the genus Reynoutria (syn. Fallopia)–Reynoutria japonica, Reynoutria sachalinensis, and a hybrid of them, Reynoutria x bohemica–are noxious invasive plants in Europe and North America. R. japonica is a traditional East Asian (Japan and China) drug (Polygoni cuspidati rhizoma). Recently, it has been included in European Pharmacopoeia as one of the traditional Chinese medicinal herbs. In this study, a reversed-phase high performance liquid chromatography method with diode array detector and time-of-flight mass spectrometry was developed and validated for the profiling of rhizomes from European invasive populations and Polygoni cuspidati rhizoma purchased in China. Twenty-five compounds were identified, mainly stilbenes, anthraquinones, flavan-3-ols, and phenylpropanoid esters. Tatariside B, hydropiperoside, vanicoside C, a new compound (3,6-O-di-p-coumaroyl)-β-fructofuranosyl-(2 → 1)-(2′-O-acetyl-6′-O-feruloyl)-β-glucopyranoside) were reported for the first time in these raw materials. Six compounds from three phytochemical classes–stilbenes: piceid and resveratrol; anthraquinones: emodin and physcion; hydroxycinnamic sucrose esters: vanicosides A and B–were quantified using the validated method. R. japonica from China contained twice as many stilbenoids than samples from Poland (piceid 14.83 mg/g dm vs. 7.45 mg/g and resveratrol 1.29 mg/g vs. 0.65 mg/g). R. sachalinensis rhizomes contained lower quantities of anthraquinones and no detectable stilbenes, which together with higher amounts of hydroxycinnamic glycosides makes it easily distinguishable from the other two. The phytochemical profile of R. x bohemica was intermediate between the two parent species.


2013 ◽  
Vol 1 (04) ◽  
pp. 95-101 ◽  
Author(s):  
Rahul Singh ◽  
Ashish Pathak ◽  
Pooja Chawla

A modified simple, selective, rapid, precise reversed phase high performance liquid chromatography method has been developed and validated for the simultaneous estimation of ketorolac and sparfloxacin. The separation was made in a Hypersil-Keystone C-18 column using a methanol: water (60:40, v/v) (pH 3.1) as mobile phase at 308 nm. The mobile-phase flow rate and the sample volume injected were 0.9 ml/min and 20 μl, respectively. Retention time of sparfloxacin and ketorolac was found to be 3.181 and 4.473 minutes respectively. The correlation coefficient of both drugs was found to be 0.999. The accuracy of ketorolac was found to be 99.82% - 100.55% whereas for sparfloxacin, it was 99.76% - 99.89%. Over all % RSD was found to be less than 2%. The method was validated according to ICH guidelines with respect to linearity, accuracy, precision, robustness, specificity, etc. The developed method can be used for routine analysis of ketorolac and sparfloxacin in their pharmaceutical dosage forms.


1970 ◽  
Vol 6 (2) ◽  
pp. 135-141
Author(s):  
Shailesh S Chalikwar ◽  
Satish D Kayande ◽  
Inderbir Singh ◽  
Atul A Shirkhedkar

Axitinib is a tyrosine kinase Inhibiter. In a commenced analysis, a effortless and responsive high-performance liquid-chromatography method was developed and validated for the quantitative estimation of Axitinib in bulk and in-house tablet dosage form. The present method was developed and validated using LC-GC Qualisil BDS C18 (250 mm × 4.6 mm, 5 μm). The separation of Axitinib was employed using a methanol: water 85:15% v/vas a mobile phase at optimal flow rate 1 mL/min and column oven temperature 30°C. While, Axitinib was examined at 330 nm with a photo diode array detector; retention timewas found to be 3.23 min.The intended method was validated by ICH rules for the accuracy, precision, sensitivity, and ruggedness. The linearity was followed in the concentration range of 4 - 24 μg/ mL as demonstrated by correlation coefficient (r2) of 0.9994. The robustness of proposed method was assessed by purposelyvarying the chromatographic conditions. Consequently, the intended method can routinely be subjected for th estimation of Axitinib in bulk and in tablets formulation.


Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


2014 ◽  
Vol 6 (16) ◽  
pp. 6560-6564 ◽  
Author(s):  
Wuxiang Zhang ◽  
Yicong Su ◽  
Jiangu Shi ◽  
Maosheng Zhang ◽  
Bide Wu ◽  
...  

In this paper, a high performance liquid chromatography technique is established for quantification of paraquat in blood.


INDIAN DRUGS ◽  
2021 ◽  
Vol 57 (10) ◽  
pp. 47-57

An isocratic Reversed-Phase High Performance Liquid Chromatography method has been developed for rapid and simultaneous separation and estimation of two antibiotics, namely, nitazoxanide and ofloxacin, in human plasma. Separation was carried out on Altima C8 (150 x 4.6 mm, 5µ) column using a mobile phase of 0.1% ortho phosphoric acid: acetonitrile (50:50, V/V) at 260 nm. The retention time of nitazoxanide and ofloxacin was noted to be 4.850 and 7.949 min, respectively. The average % recovery for nitazoxanide and ofloxacin were 98.012 % and 94.176 %, respectively and reproducibility was found to be satisfactory. The linearity was investigated in the concentration range of 0.02-2 µg/ml (r2=0.9996) for nitazoxanide and 0.008-0.8 µg/ml (r2=0.9998) for ofloxacin. The lower limits of quantification were 0.0196 µg/ml and 0.0079 µg/ml for nitazoxanide and ofloxacin, respectively, which reach the level of both drugs possibly found in human plasma. The proposed method can be applied for etermination of nitazoxanide and ofloxacin from dosage forms during pharmacokinetic study.


2008 ◽  
Vol 30 (3) ◽  
pp. 341-346 ◽  
Author(s):  
Maria Bernadete Sousa Maia ◽  
Ismael Leite Martins ◽  
Demétrius Fernandes do Nascimento ◽  
Adriano Nunes Cunha ◽  
Francisco Evanir Gonçalves de Lima ◽  
...  

2019 ◽  
Vol 8 (3) ◽  
pp. 671-674

Bioanalytical methods for bioequivalence studies require high sensibility and rapidity due to the large number of samples and the low plasma concentration of drugs. The present study aimed to develop and validate a high-performance liquid chromatography method to quantify cimetidine (CMT) in human plasma and to apply it in a bioequivalence study. Spiked plasma of 500 µl (l, m and h concentration) was used for the assay. The HPLC injection volume was 20μl of the reconstitute sample where, 2 ml of ethyl acetate used for extraction purposes. Cimetidine was prepared separately for low (80 ng/ml), medium (2000 ng/ml) and high (3600 ng/ml) concentrations and internal standard (ranitidine) concentration was 3000 ng/ml. Freeze thawing and long terms stability were conducted at -25º c. The individual calibration curve for spiked standards was linear with R2= 0.99. The inaccuracy values for QC samples were within 15% of the actual value and not more than 20% for the LOQ. The limit of quantitation (LOQ) was 40 ng/ml, which was also the lowest concentration of cimetidine that was quantitated with the variability of 5.9%. The within day precision and between day precision for LOQ were 10.8 and 5.9 respectively. The retention time for the analyte was 4.1-4.5 minutes during the within a day and between day results. The mean % inaccuracy values for low, medium and high concentration were 6.8, 5.6 and 7.8 respectively for within day and 2.4, 6.1 and 7.9 respectively for between days. The within day and between day % inaccuracy for LOQ concentration was 12.4 and 5.5 respectively. The mean recoveries for low, medium and high concentration of cimetidine were 80.2, 70.9 and 74.2. The overall mean recovery for cimetidine was 75.1%. The maximum inaccuracy for freeze thaw cycle and long term stability samples for low, medium and high was found with CV less than 15% for all concentrations, indicating that cimetidine is stable. The developed method was precise and accurate and was suitable to be applied for the bioequivalence study of cimetidine.


Sign in / Sign up

Export Citation Format

Share Document