scholarly journals A Study of Effectiveness Evaluation of Internet of Things Traffic Control Devices in Preparation of Autonomous Vehicle Operation Using Simulation

2021 ◽  
Vol 39 (6) ◽  
pp. 737-752
Author(s):  
Miyoung BHIN ◽  
Seulk SON
Author(s):  
James E. Bryden ◽  
Laurel B. Andrew ◽  
Jan S. Fortuniewicz

There were 496 work zone traffic accidents on New York State Department of Transportation construction projects from 1994 through 1996. These accidents involved impacts with work zone traffic control devices and safety features; construction features, such as pavement bumps and joints; drainage features; excavations and materials; and construction vehicles, equipment, and workers. These items, which include all of the features introduced into the roadway environment by construction activity, represent one-third of all work zone accidents and 37 percent of those involving serious injury. Channelizing devices, arrow panels, signs, and other traffic control devices generally resulted in little harm when impacted. Impact attenuators, both fixed and truck mounted, also performed well. Although portable concrete barriers prevent vehicle intrusions, impacts with barrier are severe events. Barriers must be properly designed and limited to only those locations where they are needed to protect more serious hazards. Construction vehicles, equipment, and workers were involved in over 20 percent of all work zone accidents, resulting in serious injuries. Although intrusions by private vehicles into work spaces are a serious concern, construction vehicles, equipment, and workers in open travel lanes are also a serious concern. Good design of work zone traffic control plans, combined with adequate training and supervision of workers, is essential to control both concerns.


Author(s):  
Md Atiquzzaman ◽  
Huaguo Zhou

Wrong-way driving (WWD) crashes are a critical safety issue on freeways. Although these crashes are rare and random in nature, they often result in severe injuries and/or fatalities. Typically, exit ramp terminals are the initial point of entry for wrong-way (WW) drivers on freeways. Therefore, it is important for transportation agencies to identify the exit ramp terminals with higher possibility of WW entries and apply safety countermeasures to reduce the chances of their occurrence. However, the random nature of WWD crashes and the difficulty in identifying the actual entry points makes it hard for transportation agencies to assess the risk of WWD at a particular exit ramp terminal and apply countermeasures accordingly. This study developed mathematical models for predicting the risk of WW entries at the exit ramp terminals of full diamond interchanges. The geometric design features, usage of traffic control devices, area type where the interchanges are located, and annual average daily traffic (AADT) at the exit ramp terminals with or without history of WWD were used as potential predictors of WW entry. Transportation agencies can use these models to assess the risk of WW entries at the exit ramp terminals within their jurisdictions and consider possible countermeasures. They also can be applied during the design phase to determine the combination of geometric design features and traffic control devices that ensures the least possibility of WW entry.


2021 ◽  
Vol 133 ◽  
pp. 15-26
Author(s):  
Paweł Drózd ◽  
Adam Rosiński

The paper presents the issues of railway traffic control devices testing and focuses on European Train Control System (ETCS) devices widely implemented in railways. The functions of the ETCS system, principles of operation are described. The basic telegrams transmitted in the track-to-train relation are listed. The process of designing and verifying the implemented data and what parameters are checked at the stage of field tests using the locomotive is briefly described. The functional model of the SRK devices, including ETCS elements, was presented, and the close relationship between the base layer of the railway traffic control devices and the ETCS was shown. Equipment testing reduces the availability of the rail network, engages staff, and generates costs. A test generation method is presented to minimize the impact. Two indicators are proposed for reducing the set of checks, the cost of checking and the information effectiveness. The cost of checking due to the problematic estimate is generalized, divided into three groups taking into account the difficulty and resource consumption of bringing the devices to the initial state and their operation according to the test. Therefore, the obtained set of checks is suboptimal and ensures complete coverage of the functions with tests, which is essential when testing devices. The tests are carried out using available setting commands and the implementation of tasks - entry and exit routes at the station. The proposed method is universal and can be applied to any railway traffic control device, regardless of the manufacturing technology. It is a non-invasive method in the structure of the tested devices and does not require additional hardware resources.


Author(s):  
H. Gene Hawkins ◽  
Kay Fitzpatrick ◽  
Marcus A. Brewer

The 2009 United States Manual on Uniform Traffic Control Devices (MUTCD) includes guidance for the use of various types of traffic control at unsignalized intersections. Despite changes and advances in traffic engineering in recent decades, the MUTCD content related to selection of traffic control in Part 2B has seen only minor changes since 1971. The types of unsignalized traffic control addressed in the current research included no control, yield control, two-way stop control, and all-way stop control. The research team developed recommendations using information available from reviews of existing literature, policies, guidelines, and findings from an economic analysis along with the engineering judgment of the research team and panel. The researchers then developed recommended language for the next edition of the MUTCD for unsignalized intersections. This includes consideration of high-speed (rural) and low-speed (urban) conditions along with the number of legs at the intersection. Because the number of expected crashes at an intersection is a function of the number of legs, the decision on appropriate traffic control should also be sensitive to the number of legs present. The proposed language includes introductory general considerations, discusses alternatives to changing right-of-way control, and steps through the various forms of unsignalized control from least restrictive to most restrictive, beginning with no control and concluding with all-way stop control.


Author(s):  
Hoe Kyoung Kim ◽  
Michael P. Hunter

The Manual on Uniform Traffic Control Devices (MUTCD) contains the national standard for installing and maintaining traffic control devices on all streets and highways. The 2003 MUTCD contains numerous corrections, revisions, and updates to the millennium edition (2000). One update is related to the definition of crossing distance at signalized intersections, where the crossing distance is extended to the far-side curb rather than the center of the farthest traffic lane. This study investigated the sensitivity of intersection performance to crossing distance and walking speed, critical constraints in the determination of the minimum green time. Three crossing distance standards and four walking speeds are considered. With Highway Capacity Manual (HCM) procedures, the impacts of the given crossing distance definitions and walking speeds on intersection operations were tested on two intersection configurations over a range of cycle lengths and traffic volumes. The effect on intersection performance was found to be most significant at low cycle lengths, in some instances with the delay increased manyfold. However, when cycle lengths were increased to account for the pedestrian constraints, optimal delay rarely increased by more than a few seconds. Additionally, as the discrepancy between the critical lane traffic volume on the main and cross streets was increased, the impact of pedestrian green times on vehicle delay also increased. It was seen that as the cycle length increased, pedestrian minimum green times no longer governed, so the impact of pedestrians on intersection performance became increasingly insignificant, often with a minimal impact on the optimal performance.


2018 ◽  
Vol 121 ◽  
pp. 411-421
Author(s):  
Paweł Wontorski ◽  
Andrzej Kochan

The article presents the concept of integration system of design automation and system of project management. A model was developed cooperation between the two systems on several levels, based on continuous monitoring of the design process and comparing the assumed values of the selected parameters from the actual values. The selection of variables transmitted based on the assumption of cooperation project management system with the system of design automation for railway traffic control devices, designed to support of designers. Due to the nature of projects for railway traffic control devices drew attention to the quality control of the project in the context of the safety and reliability of railway traffic control system, the impact of deviations from the schedule to the railway timetable, version compatibility, and changes in the chamfering work on objects with continuous rail traffic. The structure of the model is presented in graphical form.


Author(s):  
King K. Mak ◽  
Roger P. Bligh ◽  
Lewis R. Rhodes

Safety of work zones is a major area of concern since it is not always possible to maintain a level of safety comparable to that of a normal highway not under construction. Proper traffic control is critical to the safety of work zones. However, traffic control devices themselves may pose a safety hazard when impacted by errant vehicles. The impact performance of many work zone traffic control devices is mostly unknown, and little, if any, crash testing has been conducted in accordance with guidelines set forth in NCHRP Report 350. The Texas Department of Transportation (TxDOT) has, in recent years, sponsored a number of studies at the Texas Transportation Institute to assess the impact performance of various work zone traffic control devices, including plastic drums and sign substrates, temporary and portable sign supports, plastic cones, vertical panels, and barricades. The results, findings, conclusions, and recommendations are presented for temporary and portable sign supports, plastic drums, sign substrates for use with plastic drums, traffic cones, and vertical panels, whereas those for barricades are covered elsewhere. Most of the work zone traffic control devices satisfactorily met the evaluation criteria set forth in NCHRP Report 350 and are recommended for field implementation. However, some of the devices failed to perform satisfactorily and are not recommended for field applications. The results from these studies are being incorporated into the TxDOT barricade and construction standard sheets for use in work zones.


Sign in / Sign up

Export Citation Format

Share Document