scholarly journals A harmonized multi-time difference scheme and its stability

2005 ◽  
Vol 54 (7) ◽  
pp. 3465
Author(s):  
Zhang Li-Xin ◽  
Qian Wei-Hong ◽  
Gao Xin-Quan ◽  
Chou Ji-Fan
2008 ◽  
Vol 65 (7) ◽  
pp. 2235-2253 ◽  
Author(s):  
Tongwen Wu ◽  
Rucong Yu ◽  
Fang Zhang

Abstract This paper describes a dynamic framework for an atmospheric general circulation spectral model in which a reference stratified atmospheric temperature and a reference surface pressure are introduced into the governing equations so as to improve the calculation of the pressure gradient force and gradients of surface pressure and temperature. The vertical profile of the reference atmospheric temperature approximately corresponds to that of the U.S. midlatitude standard atmosphere within the troposphere and stratosphere, and the reference surface pressure is a function of surface terrain geopotential and is close to the observed mean surface pressure. Prognostic variables for the temperature and surface pressure are replaced by their perturbations from the prescribed references. The numerical algorithms of the explicit time difference scheme for vorticity and the semi-implicit time difference scheme for divergence, perturbation temperature, and perturbation surface pressure equation are given in detail. The modified numerical framework is implemented in the Community Atmosphere Model version 3 (CAM3) developed at the National Center for Atmospheric Research (NCAR) to test its validation and impact on simulated climate. Both the original and the modified models are run with the same spectral resolution (T42), the same physical parameterizations, and the same boundary conditions corresponding to the observed monthly mean sea surface temperature and sea ice concentration from 1971 to 2000. This permits one to evaluate the performance of the new dynamic framework compared to the commonly used one. Results show that there is a general improvement for the simulated climate at regional and global scales, especially for temperature and wind.


2012 ◽  
Vol 140 (1) ◽  
pp. 307-322 ◽  
Author(s):  
Sajal K. Kar

Abstract A new predictor-corrector time-difference scheme that employs a second-order Adams–Bashforth scheme for the predictor and a trapezoidal scheme for the corrector is introduced. The von Neumann stability properties of the proposed Adams–Bashforth trapezoidal scheme are determined for the oscillation and friction equations. Effectiveness of the scheme is demonstrated through a number of time integrations using finite-difference numerical models of varying complexities in one and two spatial dimensions. The proposed scheme has useful implications for the fully implicit schemes currently employed in some semi-Lagrangian models of the atmosphere.


2006 ◽  
Vol 55 (4) ◽  
pp. 2099
Author(s):  
Zhang Li-Xin ◽  
Gao Xin-Quan ◽  
Li Jian-Ping

2006 ◽  
Vol 134 (10) ◽  
pp. 2916-2926 ◽  
Author(s):  
Sajal K. Kar

Abstract A semi-implicit, two time-level, three-step iterative time-difference scheme is proposed for the two-dimensional nonlinear shallow-water equations in a conservative flux form. After a semi-implicit linearization of the governing equations, the linear gravity wave terms are time discretized implicitly using a second-order trapezoidal scheme applied over each iterative step, whereas the nonlinear terms including horizontal advection and other terms left over from the semi-implicit linearization are time discretized explicitly using a third-order Runge–Kutta scheme. The effectiveness of the scheme in terms of numerical accuracy, stability, and efficiency is established through a forced initial-boundary value problem studied using a two-dimensional shallow-water model.


2005 ◽  
Vol 5 (1) ◽  
pp. 3-50 ◽  
Author(s):  
Alexei A. Gulin

AbstractA review of the stability theory of symmetrizable time-dependent difference schemes is represented. The notion of the operator-difference scheme is introduced and general ideas about stability in the sense of the initial data and in the sense of the right hand side are formulated. Further, the so-called symmetrizable difference schemes are considered in detail for which we manage to formulate the unimprovable necessary and su±cient conditions of stability in the sense of the initial data. The schemes with variable weight multipliers are a typical representative of symmetrizable difference schemes. For such schemes a numerical algorithm is proposed and realized for constructing stability boundaries.


2007 ◽  
Vol 7 (1) ◽  
pp. 25-47 ◽  
Author(s):  
I.P. Gavrilyuk ◽  
M. Hermann ◽  
M.V. Kutniv ◽  
V.L. Makarov

Abstract The scalar boundary value problem (BVP) for a nonlinear second order differential equation on the semiaxis is considered. Under some natural assumptions it is shown that on an arbitrary finite grid there exists a unique three-point exact difference scheme (EDS), i.e., a difference scheme whose solution coincides with the projection of the exact solution of the given differential equation onto the underlying grid. A constructive method is proposed to derive from the EDS a so-called truncated difference scheme (n-TDS) of rank n, where n is a freely selectable natural number. The n-TDS is the basis for a new adaptive algorithm which has all the advantages known from the modern IVP-solvers. Numerical examples are given which illustrate the theorems presented in the paper and demonstrate the reliability of the new algorithm.


Sign in / Sign up

Export Citation Format

Share Document