Vertical forces and plantar pressures in selected aerobic movements versus walking

1993 ◽  
Vol 83 (9) ◽  
pp. 504-508 ◽  
Author(s):  
DL Thompson ◽  
MR Hatley ◽  
TG McPoil ◽  
MW Cornwall

Ten subjects between the ages of 19 and 29 years walked and performed four aerobic movements over a force and pressure platform. Peak plantar pressure and peak vertical force data were collected three times on the dominant leg as each subject performed all of the five activities. Peak vertical forces acting on the lower extremities for the low impact aerobic movements were significantly less when compared with the high impact movements. As was expected, no differences were found in peak vertical forces between walking and the low impact aerobic movements. Peak plantar pressures for walking were not significantly different when compared with any of the four aerobic movements studied.

2001 ◽  
Vol 91 (7) ◽  
pp. 337-342 ◽  
Author(s):  
R. Scott VanZant ◽  
Thomas G. McPoil ◽  
Mark W. Cornwall

The purpose of this study was to determine the degree of symmetry for in-shoe plantar pressure and vertical force patterns between the left and right feet of healthy subjects during walking. Thirty subjects with a mean age of 29.6 years participated in the study. Each subject walked a distance of 8 m three times while in-shoe plantar pressure and vertical force data were collected. A total of 12 steps were analyzed for both feet, and maximum vertical force, peak pressure, and pressure-time integrals were calculated for four plantar regions of the foot. No differences in the three variables were noted between male and female subjects. Plantar pressure and vertical force patterns were found to be symmetrical between the left and right feet, except for two of the four plantar regions studied. Only the forefoot and rearfoot regions were found to show significant differences between the left and right feet for plantar pressure and vertical force, respectively. The degree of asymmetry for these two plantar regions in the same foot, however, was minimal. (J Am Podiatr Med Assoc 91(7): 337-342, 2001)


2003 ◽  
Vol 24 (4) ◽  
pp. 349-353 ◽  
Author(s):  
René E. Weijers ◽  
Geert H.I.M. Walenkamp ◽  
Henk van Mameren ◽  
Alphons G.H. Kessels

We test the premise that peak plantar pressure is located directly under the bony prominences in the forefoot region. The right foot of standing volunteers was examined in three different postures by a CT-scanner. The plantar pressure distribution was simultaneously recorded. The position of the metatarsal heads and the sesamoids could be related to the corresponding local peak plantar pressures. The metatarsal heads 1, 4, and 5 had a significantly different position than the local peak plantar pressures. The average difference in distance between the position of the metatarsal heads and the peak plantar pressure showed a significant correlation: on the medial side the head was located more distally to the local peak plantar pressure, on the lateral side more proximally. The findings suggest that normal plantar soft tissue is able to deflect a load. The observations might improve insight into the function of the normal forefoot and might direct further research on the pathological forefoot and on the design of footwear.


1996 ◽  
Vol 17 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Juan Carlos Garbalosa ◽  
Peter R. Cavanagh ◽  
Ge Wu ◽  
Jan S. Ulbrecht ◽  
Mary B. Becker ◽  
...  

The function of partially amputated feet in 10 patients with diabetes mellitus was studied. First-step bilateral barefoot plantar pressure distribution and three-dimensional kinematic data were collected using a Novel EMED platform and three video cameras. Analysis of the plantar pressure data revealed a significantly greater mean peak plantar pressure in the feet with transmetatarsal amputation (TMA) than in the intact feet of the same patients. The heels of the amputated feet had significantly lower mean peak plantar pressures than all the forefoot regions. A significantly greater maximum dynamic dorsiflexion range of motion was seen in the intact compared with the TMA feet. However, no difference was noted in the static dorsiflexion range of motion between the two feet and there was, therefore, a trend for the TMA feet to use less of the available range of motion. Given the altered kinematics and elevated plantar pressures noted in this study, careful postsurgical footwear management of feet with TMA would appear to be essential if ulceration is to be prevented.


2013 ◽  
Vol 38 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Farnaz Alimerzaloo ◽  
Reza V Kashani ◽  
Hassan Saeedi ◽  
Marjan Farzi ◽  
Nader Fallahian

Background: Heel clearance and ankle status (free or locked) are of major determinants affecting peak plantar pressures and contact area in patellar tendon bearing brace and have been separately studied by many researchers. This study investigated the combined effect of ankle status and heel clearance on contact area and peak plantar pressure in different areas of foot (hindfoot, midfoot, and forefoot). Study design: Before–after repeated measurement trial. Methods: Nine healthy male volunteers walked 8 m with normal shoe and four conditions of patellar tendon bearing brace wear. Repeated-measure analysis of variance test was used to compare contact area and plantar pressure changes in three areas of the foot. Results: Application of patellar tendon bearing brace significantly reduced overall plantar pressure and contact area ( p < 0.01). Although both contact area and plantar pressure significantly decreased in hindfoot and midfoot, plantar pressure increased in forefoot area ( p < 0.05). Conclusions: Application of the patellar tendon bearing brace can reduce the overall peak plantar pressure in the foot but increases focal plantar pressure in forefoot. Excessive lifting of the heel seems to minimize the contact area, thus increase focal pressure in forefoot. Overall, plantar pressure seems to be more effectively off-loaded by combining maximum heel clearance and restriction of the ankle joint. Clinical relevance Although effective parameters of patellar tendon bearing brace have been separately addressed in previous studies, no study was found that investigated the combined effect of ankle status and heel clearance. This study investigates the combined effect of these parameters and provides detailed information on clinical application of the patellar tendon bearing brace.


2016 ◽  
Vol 29 (3) ◽  
pp. 469-476 ◽  
Author(s):  
Alexandre Faraco de Oliveira ◽  
Ana Carolina Bertoletti De Marchi ◽  
Camila Pereira Leguisamo

Abstract Introduction: Diabetes Mellitus is a chronic disease with high prevalence in the population in particular among the elderly. The longer time of diabetes, increased the chances of developing complications such as peripheral neuropathy, which is an important factor in the genesis of plantar lesions by changing the distribution and formation of plantar pressure peaks. Objective: Evaluate the influence of an Assistive Technology, therapeutic footwear for diabetics, in the peaks of plantar pressure of elderly. Methods: This was an experimental study of transversal type, composed by 10 elderly, diabetic, with peripheral neuropathy, using as an instrument to measure a baropodometry platform. Were measured peaks of plantar pressure, static and dynamic in three situations: barefoot, the participants' own standard footwear and with therapeutic footwear for diabetics. Data analysis by normal distribution as a single paired sample, applying the ANOVA test. Results: The use of therapeutic footwear for diabetics promoted a reduction in media of peak plantar pressure in the order of 22% in static analysis, and 31% in dynamic analysis. Conclusion: The therapeutic footwear for diabetics was able to produce significant reductions in peak plantar pressure, being more efficient than a common footwear. This effect may contribute to the prevention of injuries associated with the diabetic foot.


1992 ◽  
Vol 82 (10) ◽  
pp. 507-513 ◽  
Author(s):  
PB Sanfilippo ◽  
RM Stess ◽  
KM Moss

A comparison of five commonly used insole materials (Spenco, PPT, Plastazote, Nickelplast, and Pelite) was made to evaluate their effectiveness in reducing plantar vertical pressures on human subjects during walking. With the use of the EMED-SF pedograph force plate system, dynamic measures of vertical force, force-time integral, peak plantar pressure, pressure-time integral, and area of foot-to-ground contact were compared with the force plate covered with each of the insole materials and without any interface material.


2008 ◽  
Vol 98 (5) ◽  
pp. 374-378 ◽  
Author(s):  
Tanya J. Carl ◽  
Stephen L. Barrett

Background: High peak plantar pressures predispose to foot problems and may exacerbate existing conditions. For podiatric physicians to make educated recommendations to their patients, it is important and necessary to begin to look at different shoes and how they affect peak plantar pressure. Methods: To determine how flip-flops change peak plantar pressure while walking, we compared peak plantar pressures in the same test subjects wearing flip-flops, wearing athletic shoes, and in bare feet. Ten women with size 7 feet and a body mass index less than 25 kg/m2 were tested with an in-shoe pressure-measurement system. These data were collected and analyzed by one-way analysis of variance and computer software. Results: Statistically significant results were obtained for nine of the 18 comparisons. In each of these comparisons, flip-flops always demonstrated higher peak plantar pressures than athletic shoes but lower pressures than bare feet. Conclusion: Although these data demonstrate that flip-flops have a minor protective role as a shock absorber during the gait cycle compared with pressures measured while barefoot, compared with athletic shoes, they increase peak plantar pressures, placing the foot at greater risk for pathologic abnormalities. (J Am Podiatr Med Assoc 98(5): 374–378, 2008)


1992 ◽  
Vol 82 (8) ◽  
pp. 412-416 ◽  
Author(s):  
TG McPoil ◽  
MW Cornwall

Twelve subjects between the ages of 24 and 35 years walked barefoot over a pressure platform with the following insole materials placed directly on top of the platform: 1) PPT, 2) Spenco, and 3) Viscolas. Maximum vertical force, vertical force-time integral as well as maximum plantar pressure data were collected for the rearfoot, midfoot, and forefoot regions. The results were not significant for maximum vertical force and vertical force-time integral among the three insole materials when compared to barefoot-only walking. There was, however, a significant reduction in forefoot maximum plantar pressure among the three materials compared to barefoot-only walking. In the rearfoot region, a reduction in maximum plantar pressure was seen only with PPT and Spenco.


2004 ◽  
Vol 94 (3) ◽  
pp. 255-260 ◽  
Author(s):  
Simon J. Otter ◽  
Catherine Jane Bowen ◽  
Adam K. Young

We sought to investigate the magnitude and duration of peak forefoot plantar pressures in rheumatoid arthritis. The spatial and temporal characteristics of forefoot plantar pressures were measured in 25 patients with a positive diagnosis of rheumatoid arthritis of 5 to 10 years’ duration (mean, 8 years) and a comparison group using a platform-based pressure-measurement system. There were no significant differences between groups in the magnitude of peak plantar pressure in the forefoot region. Significant differences were, however, noted for temporal aspects of foot-pressure measurement. The duration of loading over sensors detecting peak plantar pressure was significantly longer in the rheumatoid arthritis group. In addition, the rheumatoid arthritis group demonstrated significantly greater force–time integrals. Significant increases in the temporal parameters of plantar pressure distribution, rather than those of amplitude, may be characteristic of the rheumatoid foot. (J Am Podiatr Med Assoc 94(3): 255–260, 2004)


2016 ◽  
Vol 106 (4) ◽  
pp. 246-251 ◽  
Author(s):  
Alfred Gatt ◽  
Andrea Briffa ◽  
Nachiappan Chockalingam ◽  
Cynthia Formosa

Background: We investigated the effectiveness and durability of two types of plantar padding, the plantar metatarsal pad and the single wing plantar cover, which are commonly used for reducing forefoot plantar pressures. Methods: Mean peak plantar pressure and impulse at the hallux and at the first, second, third, and fourth metatarsophalangeal joints across both feet were recorded using the two-step method in 18 individuals with normal asymptomatic feet. Plantar paddings were retained for 5 days, and their durability and effectiveness were assessed by repeating the foot plantar measurement at baseline and after 3 and 5 days. Results: The single wing plantar cover devised from 5-mm felt adhesive padding was effective and durable in reducing peak plantar pressure and impulse at the first metatarsophalangeal joint (P = .001 and P = .015, respectively); however, it was not found to be effective in reducing peak plantar pressure and impulse at the hallux (P = .782 and P = .845, respectively). The plantar metatarsal pad was not effective in reducing plantar forefoot pressure and impulse at the second, third, and fourth metatarsophalangeal joints (P = .310 and P = .174, respectively). Conclusions: These results imply limited applicability of the single wing plantar cover and the plantar metatarsal pad in reducing hallux pressure and second through fourth metatarsophalangeal joint pressure, respectively. However, the single wing plantar cover remained durable for the 5 days of the trial and was effective in reducing the peak plantar pressure and impulse underneath the first metatarsophalangeal joint.


Sign in / Sign up

Export Citation Format

Share Document