scholarly journals Lis1 regulates dynein by sterically blocking its mechanochemical cycle

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Katerina Toropova ◽  
Sirui Zou ◽  
Anthony J Roberts ◽  
William B Redwine ◽  
Brian S Goodman ◽  
...  

Regulation of cytoplasmic dynein's motor activity is essential for diverse eukaryotic functions, including cell division, intracellular transport, and brain development. The dynein regulator Lis1 is known to keep dynein bound to microtubules; however, how this is accomplished mechanistically remains unknown. We have used three-dimensional electron microscopy, single-molecule imaging, biochemistry, and in vivo assays to help establish this mechanism. The three-dimensional structure of the dynein–Lis1 complex shows that binding of Lis1 to dynein's AAA+ ring sterically prevents dynein's main mechanical element, the ‘linker’, from completing its normal conformational cycle. Single-molecule experiments show that eliminating this block by shortening the linker to a point where it can physically bypass Lis1 renders single dynein motors insensitive to regulation by Lis1. Our data reveal that Lis1 keeps dynein in a persistent microtubule-bound state by directly blocking the progression of its mechanochemical cycle.

2013 ◽  
Vol 288 (23) ◽  
pp. 16460-16475 ◽  
Author(s):  
Linda J. Olson ◽  
Ramiro Orsi ◽  
Solana G. Alculumbre ◽  
Francis C. Peterson ◽  
Ivan D. Stigliano ◽  
...  

Here we report for the first time the three-dimensional structure of a mannose 6-phosphate receptor homology (MRH) domain present in a protein with enzymatic activity, glucosidase II (GII). GII is involved in glycoprotein folding in the endoplasmic reticulum. GII removes the two innermost glucose residues from the Glc3Man9GlcNAc2 transferred to nascent proteins and the glucose added by UDP-Glc:glycoprotein glucosyltransferase. GII is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit. GIIβ participates in the endoplasmic reticulum localization of GIIα and mediates in vivo enhancement of N-glycan trimming by GII through its C-terminal MRH domain. We determined the structure of a functional GIIβ MRH domain by NMR spectroscopy. It adopts a β-barrel fold similar to that of other MRH domains, but its binding pocket is the most shallow known to date as it accommodates a single mannose residue. In addition, we identified a conserved residue outside the binding pocket (Trp-409) present in GIIβ but not in other MRHs that influences GII glucose trimming activity.


2003 ◽  
Vol 3 ◽  
pp. 623-635 ◽  
Author(s):  
Ivan Y. Torshin ◽  
Robert W. Harrison

How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context ofin vivoprotein folding (which has been studied only for a few proteins), the roles of the fundamental physical forces in thein vitrofolding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces). Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.


2021 ◽  
Author(s):  
Klara Markova ◽  
Antonin Kunka ◽  
Klaudia Chmelova ◽  
Martin Havlasek ◽  
Petra Babkova ◽  
...  

<p>The functionality of a protein depends on its unique three-dimensional structure, which is a result of the folding process when the nascent polypeptide follows a funnel-like energy landscape to reach a global energy minimum. Computer-encoded algorithms are increasingly employed to stabilize native proteins for use in research and biotechnology applications. Here, we reveal a unique example where the computational stabilization of a monomeric α/β-hydrolase enzyme (<i>T</i><sub>m</sub> = 73.5°C; Δ<i>T</i><sub>m</sub> > 23°C) affected the protein folding energy landscape. Introduction of eleven single-point stabilizing mutations based on force field calculations and evolutionary analysis yielded catalytically active domain-swapped intermediates trapped in local energy minima. Crystallographic structures revealed that these stabilizing mutations target cryptic hinge regions and newly introduced secondary interfaces, where they make extensive non-covalent interactions between the intertwined misfolded protomers. The existence of domain-swapped dimers in a solution is further confirmed experimentally by data obtained from SAXS and crosslinking mass spectrometry. Unfolding experiments showed that the domain-swapped dimers can be irreversibly converted into native-like monomers, suggesting that the domain-swapping occurs exclusively <i>in vivo</i>. Our findings uncovered hidden protein-folding consequences of computational protein design, which need to be taken into account when applying a rational stabilization to proteins of biological and pharmaceutical interest.</p>


2021 ◽  
Author(s):  
Klara Markova ◽  
Antonin Kunka ◽  
Klaudia Chmelova ◽  
Martin Havlasek ◽  
Petra Babkova ◽  
...  

<p>The functionality of a protein depends on its unique three-dimensional structure, which is a result of the folding process when the nascent polypeptide follows a funnel-like energy landscape to reach a global energy minimum. Computer-encoded algorithms are increasingly employed to stabilize native proteins for use in research and biotechnology applications. Here, we reveal a unique example where the computational stabilization of a monomeric α/β-hydrolase enzyme (<i>T</i><sub>m</sub> = 73.5°C; Δ<i>T</i><sub>m</sub> > 23°C) affected the protein folding energy landscape. Introduction of eleven single-point stabilizing mutations based on force field calculations and evolutionary analysis yielded catalytically active domain-swapped intermediates trapped in local energy minima. Crystallographic structures revealed that these stabilizing mutations target cryptic hinge regions and newly introduced secondary interfaces, where they make extensive non-covalent interactions between the intertwined misfolded protomers. The existence of domain-swapped dimers in a solution is further confirmed experimentally by data obtained from SAXS and crosslinking mass spectrometry. Unfolding experiments showed that the domain-swapped dimers can be irreversibly converted into native-like monomers, suggesting that the domain-swapping occurs exclusively <i>in vivo</i>. Our findings uncovered hidden protein-folding consequences of computational protein design, which need to be taken into account when applying a rational stabilization to proteins of biological and pharmaceutical interest.</p>


2000 ◽  
Vol 68 (6) ◽  
pp. 3667-3673 ◽  
Author(s):  
Soren Gantt ◽  
Cathrine Persson ◽  
Keith Rose ◽  
Ashley J. Birkett ◽  
Ruben Abagyan ◽  
...  

ABSTRACT Thrombospondin-related anonymous protein (TRAP), a candidate malaria vaccine antigen, is required for Plasmodiumsporozoite gliding motility and cell invasion. For the first time, the ability of antibodies against TRAP to inhibit sporozoite infectivity in vivo is evaluated in detail. TRAP contains an A-domain, a well-characterized adhesive motif found in integrins. We modeled here a three-dimensional structure of the TRAP A-domain of Plasmodium yoelii and located regions surrounding the MIDAS (metal ion-dependent adhesion site), the presumed business end of the domain. Mice were immunized with constructs containing these A-domain regions but were not protected from sporozoite challenge. Furthermore, monoclonal and rabbit polyclonal antibodies against the A-domain, the conserved N terminus, and the repeat region of TRAP had no effect on the gliding motility or sporozoite infectivity to mice. TRAP is located in micronemes, secretory organelles of apicomplexan parasites. Accordingly, the antibodies tested here stained cytoplasmic TRAP brightly by immunofluorescence. However, very little TRAP could be detected on the surface of sporozoites. In contrast, a dramatic relocalization of TRAP onto the parasite surface occurred when sporozoites were treated with calcium ionophore. This likely mimics the release of TRAP from micronemes when a sporozoite contacts its target cell in vivo. Contact with hepatoma cells in culture also appeared to induce the release of TRAP onto the surface of sporozoites. If large amounts of TRAP are released in close proximity to its cellular receptor(s), effective competitive inhibition by antibodies may be difficult to achieve.


2004 ◽  
Vol 165 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Shushi Nagamori ◽  
Irina N. Smirnova ◽  
H. Ronald Kaback

YidC of Echerichia coli, a member of the conserved Alb3/Oxa1/YidC family, is postulated to be important for biogenesis of membrane proteins. Here, we use as a model the lactose permease (LacY), a membrane transport protein with a known three-dimensional structure, to determine whether YidC plays a role in polytopic membrane protein insertion and/or folding. Experiments in vivo and with an in vitro transcription/translation/insertion system demonstrate that YidC is not necessary for insertion per se, but plays an important role in folding of LacY. By using the in vitro system and two monoclonal antibodies directed against conformational epitopes, LacY is shown to bind the antibodies poorly in YidC-depleted membranes. Moreover, LacY also folds improperly in proteoliposomes prepared without YidC. However, when the proteoliposomes are supplemented with purified YidC, LacY folds correctly. The results indicate that YidC plays a primary role in folding of LacY into its final tertiary conformation via an interaction that likely occurs transiently during insertion into the lipid phase of the membrane.


Reproduction ◽  
2004 ◽  
Vol 127 (4) ◽  
pp. 417-422 ◽  
Author(s):  
Tanya Hoodbhoy ◽  
Jurrien Dean

The zona pellucida surrounding the egg and pre-implantation embryo is required for in vivo fertility and early development. Explanatory models of sperm–egg recognition need to take into account the ability of sperm to bind to ovulated eggs, but not to two-cell embryos. For the last two decades, investigators have sought to identify an individual protein or carbohydrate side chain as the ‘sperm receptor’. However, recent genetic data in mice are more consistent with the three-dimensional structure of the zona pellucida, rather than a single protein (or carbohydrate), determining sperm binding. The mouse and human zonae pellucidae contain three glycoproteins (ZP1, ZP2, ZP3) and, following fertilization, ZP2 is proteolytically cleaved. The replacement of endogenous mouse proteins with human ZP2, ZP3 or both does not alter taxon specificity of sperm binding or prevent fertility. Surprisingly, human ZP2 is not cleaved following fertilization and intact ZP2 correlates with persistent sperm binding to two-cell embryos. Taken together, these data support a model in which the cleavage status of ZP2 modulates the three-dimensional structure of the zona pellucida and determines whether sperm bind (uncleaved) or do not (cleaved).


2009 ◽  
Vol 96 (3) ◽  
pp. 33a ◽  
Author(s):  
Laurent Holtzer ◽  
Anna Kicheva ◽  
Marcos Gonzalez-Gaitan ◽  
Thomas Schmidt

2003 ◽  
Vol 185 (5) ◽  
pp. 1712-1718 ◽  
Author(s):  
Teruhisa Hirai ◽  
Jürgen A. W. Heymann ◽  
Peter C. Maloney ◽  
Sriram Subramaniam

ABSTRACT The major facilitator superfamily includes a large collection of evolutionarily related proteins that have been implicated in the transport of a variety of solutes and metabolites across the membranes of organisms ranging from bacteria to humans. We have recently reported the three-dimensional structure, at 6.5 Å resolution, of the oxalate transporter, OxlT, a representative member of this superfamily. In the oxalate-bound state, 12 helices surround a central cavity to form a remarkably symmetrical structure that displays a well-defined pseudo twofold axis perpendicular to the plane of the membrane as well as two less pronounced, mutually perpendicular pseudo twofold axes in the plane of the membrane. Here, we combined this structural information with sequence information from other members of this protein family to arrive at models for the arrangement of helices in this superfamily of transport proteins. Our analysis narrows down the number of helix arrangements from about a billion starting possibilities to a single probable model for the relative spatial arrangement for the 12 helices, consistent both with our structural findings and with the majority of previous biochemical studies on members of this superfamily.


2006 ◽  
Vol 396 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Andreas G. Glaser ◽  
Andreas Limacher ◽  
Sabine Flückiger ◽  
Annika Scheynius ◽  
Leonardo Scapozza ◽  
...  

Cyclophilins constitute a family of proteins involved in many essential cellular functions. They have also been identified as a panallergen family able to elicit IgE-mediated hypersensitivity reactions. Moreover, it has been shown that human cyclophilins are recognized by serum IgE from patients sensitized to environmental cyclophilins. IgE-mediated autoreactivity to self-antigens that have similarity to environmental allergens is often observed in atopic disorders. Therefore comparison of the crystal structure of human proteins with similarity to allergens should allow the identification of structural similarities to rationally explain autoreactivity. A new cyclophilin from Aspergillus fumigatus (Asp f 27) has been cloned, expressed and showed to exhibit cross-reactivity in vitro and in vivo. The three-dimensional structure of cyclophilin from the yeast Malassezia sympodialis (Mala s 6) has been determined at 1.5 Å (1 Å=0.1 nm) by X-ray diffraction. Crystals belong to space group P41212 with unit cell dimensions of a=b=71.99 Å and c=106.18 Å. The structure was solved by molecular replacement using the structure of human cyclophilin A as the search model. The refined structure includes all 162 amino acids of Mala s 6, an active-site-bound Ala-Pro dipeptide and 173 water molecules, with a crystallographic R- and free R-factor of 14.3% and 14.9% respectively. The overall structure consists of an eight-stranded antiparallel β-barrel and two α-helices covering the top and bottom of the barrel, typical for cyclophilins. We identified conserved solvent-exposed residues in the fungal and human structures that are potentially involved in the IgE-mediated cross-reactivity.


Sign in / Sign up

Export Citation Format

Share Document