scholarly journals The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
David S Booth ◽  
Yifan Cheng ◽  
Alan D Frankel

The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-RanGTP nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.

Microbiology ◽  
2000 ◽  
Vol 81 (5) ◽  
pp. 1265-1272 ◽  
Author(s):  
Rina Rosin-Arbesfeld ◽  
Abraham Yaniv ◽  
Arnona Gazit

The Rev protein of equine infectious anaemia virus (EIAV) was shown previously to stimulate the expression of a heterologous CAT reporter gene when the 3′ half of the EIAV genome was present downstream in cis. However, computer analysis could not reveal the existence of a stable RNA secondary structure that could be analogous to the Rev-responsive element of other lentiviruses. In the present study, the inhibitory RNA element designated the cis-acting repressing sequence (CRS) has been localized to the centre of the EIAV genome. The inhibition exerted by this element could be overcome by supplying Rev in trans. The ability of the EIAV CRS to function in a heterologous context suggests that it does not require interactions with other viral proteins. Site-directed mutagenesis showed that the various centrally located suboptimal splice sites of the EIAV genome function as CRS and confer Rev-dependence on the CRS-containing transcripts. In addition, the data suggest that in canine Cf2Th cells, which are highly permissive for EIAV replication, CRS prevents nuclear export of CRS-containing transcripts and the supply of Rev relieves this suppression.


2001 ◽  
Vol 21 (7) ◽  
pp. 2545-2554 ◽  
Author(s):  
Brian W. Guzik ◽  
Lyne Levesque ◽  
Susan Prasad ◽  
Yeou-Cherng Bor ◽  
Ben E. Black ◽  
...  

ABSTRACT TAP, the human homologue of the yeast protein Mex67p, has been proposed to serve a role in mRNA export in mammalian cells. We have examined the ability of TAP to mediate export of Rev response element (RRE)-containing human immunodeficiency virus (HIV) RNA, a well-characterized export substrate in mammalian cells. To do this, the TAP gene was fused in frame to either RevM10 or RevΔ78–79. These proteins are nonfunctional Rev mutant proteins that can bind to HIV RNA containing the RRE in vivo but are unable to mediate the export of this RNA to the cytoplasm. However, the fusion of TAP to either of these mutant proteins gave rise to chimeric proteins that were able to complement Rev function. Significantly, cotransfection with a vector expressing NXT1 (p15), an NTF2-related cellular factor that binds to TAP, led to dramatic enhancement of the ability of the chimeric proteins to mediate RNA export. Mutant-protein analysis demonstrated that the domain necessary for nuclear export mapped to the C-terminal region of TAP and required the domain that interacts with NXT1, as well as the region that has been shown to interact with nucleoporins. RevM10-TAP function was leptomycin B insensitive. In contrast, the function of this protein was inhibited by ΔCAN, a protein consisting of part of the FG repeat domain of CAN/Nup214. These results show that TAP can complement Rev nuclear export signal function and redirect the export of intron-containing RNA to a CRM1-independent pathway. These experiments support the role of TAP as an RNA export factor in mammalian cells. In addition, they indicate that NXT1 serves as a crucial cellular cofactor in this process.


2003 ◽  
Vol 77 (13) ◽  
pp. 7236-7243 ◽  
Author(s):  
L. K. Venkatesh ◽  
T. Gettemeier ◽  
G. Chinnadurai

ABSTRACT The Rev protein of human immunodeficiency virus type 1 (HIV-1) is essential for the nucleocytoplasmic transport of unspliced and partially spliced HIV mRNAs containing the Rev response element (RRE). In a yeast two-hybrid screen of a HeLa cell-derived cDNA expression library for human factors interacting with the Rev leucine-rich nuclear export sequence (NES), we identified a kinesin-like protein, REBP (Rev/Rex effector binding protein), highly homologous to Kid, the carboxy-terminal 75-residue region of which interacts specifically with the NESs of HIV-1 Rev, human T-cell leukemia virus type 1 Rex, and equine infectious anemia virus Rev but not with functionally inactive mutants thereof. REBP is a nuclear protein that colocalizes with Rev in the nucleoplasm and nuclear periphery of transfected cells. Specific, albeit weak, interaction between REBP and Rev could be demonstrated in coimmunoprecipitation assays in BSC-40 cells. REBP can modestly enhance Rev-dependent RRE-linked reporter gene expression both independently and in cooperation with the nucleoporin cofactor Rab/hRIP. Thus, REBP displays the characteristics expected of an authentic mediator of Rev NES function and may play a role in RRE RNA transport during HIV infection.


2020 ◽  
Vol 117 (7) ◽  
pp. 3704-3710 ◽  
Author(s):  
Hiromi Imamichi ◽  
Mindy Smith ◽  
Joseph W. Adelsberger ◽  
Taisuke Izumi ◽  
Francesca Scrimieri ◽  
...  

HIV-1 proviruses persist in the CD4+ T cells of HIV-infected individuals despite years of combination antiretroviral therapy (cART) with suppression of HIV-1 RNA levels <40 copies/mL. Greater than 95% of these proviruses detected in circulating peripheral blood mononuclear cells (PBMCs) are referred to as “defective” by virtue of having large internal deletions and lethal genetic mutations. As these defective proviruses are unable to encode intact and replication-competent viruses, they have long been thought of as biologically irrelevant “graveyard” of viruses with little significance to HIV-1 pathogenesis. Contrary to this notion, we have recently demonstrated that these defective proviruses are not silent, are capable of transcribing novel unspliced forms of HIV-RNA transcripts with competent open reading frames (ORFs), and can be found in the peripheral blood CD4+ T cells of patients at all stages of HIV-1 infection. In the present study, by an approach of combining serial dilutions of CD4+ T cells and T cell–cloning technologies, we are able to demonstrate that defective proviruses that persist in HIV-infected individuals during suppressive cART are translationally competent and produce the HIV-1 Gag and Nef proteins. The HIV-RNA transcripts expressed from these defective proviruses may trigger an element of innate immunity. Likewise, the viral proteins coded in the defective proviruses may form extracellular virus-like particles and may trigger immune responses. The persistent production of HIV-1 proteins in the absence of viral replication helps explain persistent immune activation despite HIV-1 levels below detection, and also presents new challenges to HIV-1 eradication.


2019 ◽  
Vol 47 (13) ◽  
pp. 7105-7117 ◽  
Author(s):  
Chia-Chieh Chu ◽  
Raphael Plangger ◽  
Christoph Kreutz ◽  
Hashim M Al-Hashimi

AbstractThe HIV-1 Rev response element (RRE) RNA element mediates the nuclear export of intron containing viral RNAs by forming an oligomeric complex with the viral protein Rev. Stem IIB and nearby stem II three-way junction nucleate oligomerization through cooperative binding of two Rev molecules. Conformational flexibility at this RRE region has been shown to be important for Rev binding. However, the nature of the flexibility has remained elusive. Here, using NMR relaxation dispersion, including a new strategy for directly observing transient conformational states in large RNAs, we find that stem IIB alone or when part of the larger RREII three-way junction robustly exists in dynamic equilibrium with non-native excited state (ES) conformations that have a combined population of ∼20%. The ESs disrupt the Rev-binding site by changing local secondary structure, and their stabilization via point substitution mutations decreases the binding affinity to the Rev arginine-rich motif (ARM) by 15- to 80-fold. The ensemble clarifies the conformational flexibility observed in stem IIB, reveals long-range conformational coupling between stem IIB and the three-way junction that may play roles in cooperative Rev binding, and also identifies non-native RRE conformational states as new targets for the development of anti-HIV therapeutics.


Viruses ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 475 ◽  
Author(s):  
Rachel Levene ◽  
Marta Gaglia

Influenza A virus carries few of its own proteins, but uses them effectively to take control of the infected cells and avoid immune responses. Over the years, host shutoff, the widespread down-regulation of host gene expression, has emerged as a key process that contributes to cellular takeover in infected cells. Interestingly, multiple mechanisms of host shutoff have been described in influenza A virus, involving changes in translation, RNA synthesis and stability. Several viral proteins, notably the non-structural protein NS1, the RNA-dependent RNA polymerase and the endoribonuclease PA-X have been implicated in host shutoff. This multitude of host shutoff mechanisms indicates that host shutoff is an important component of the influenza A virus replication cycle. Here we review the various mechanisms of host shutoff in influenza A virus and the evidence that they contribute to immune evasion and/or viral replication. We also discuss what the purpose of having multiple mechanisms may be.


1998 ◽  
Vol 337 (1) ◽  
pp. 119-123 ◽  
Author(s):  
Glenn E. MORRIS ◽  
Nguyen thi MAN ◽  
Nguyen thi Ngoc HUYEN ◽  
Alexander PEREBOEV ◽  
John KENDRICK-JONES ◽  
...  

Monoclonal antibody (mAb) binding sites in the N-terminal actin-binding domain of utrophin have been identified using phage-displayed peptide libraries, and the mAbs have been used to probe functional regions of utrophin involved in actin binding. mAbs were characterized for their ability to interact with the utrophin actin-binding domain and to affect actin binding to utrophin in sedimentation assays. One of these antibodies was able to inhibit utrophin–F-actin binding and was shown to recognize a predicted helical region at residues 13–22 of utrophin, close to a previously predicted actin-binding site. Two other mAbs which did not affect actin binding recognized predicted loops in the second calponin homology domain of the utrophin actin-binding domain. Using the known three-dimensional structure of the homologous actin-binding domain of fimbrin, these results have enabled us to determine the likely orientation of the utrophin actin-binding domain with respect to the actin filament.


Sign in / Sign up

Export Citation Format

Share Document