scholarly journals Female mice ultrasonically interact with males during courtship displays

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Joshua P Neunuebel ◽  
Adam L Taylor ◽  
Ben J Arthur ◽  
SE Roian Egnor

During courtship males attract females with elaborate behaviors. In mice, these displays include ultrasonic vocalizations. Ultrasonic courtship vocalizations were previously attributed to the courting male, despite evidence that both sexes produce virtually indistinguishable vocalizations. Because of this similarity, and the difficulty of assigning vocalizations to individuals, the vocal contribution of each individual during courtship is unknown. To address this question, we developed a microphone array system to localize vocalizations from socially interacting, individual adult mice. With this system, we show that female mice vocally interact with males during courtship. Males and females jointly increased their vocalization rates during chases. Furthermore, a female's participation in these vocal interactions may function as a signal that indicates a state of increased receptivity. Our results reveal a novel form of vocal communication during mouse courtship, and lay the groundwork for a mechanistic dissection of communication during social behavior.

2021 ◽  
Author(s):  
Jumpei Matsumoto ◽  
Kouta Kanno ◽  
Masahiro Kato ◽  
Hiroshi Nishimaru ◽  
Tsuyoshi Setogawa ◽  
...  

Ultrasonic vocalizations in mice have recently been widely investigated as social behavior; however, using existing sound localization systems in home cages, which allow observations of more undisturbed behavior expressions, is challenging. We introduce a novel system, named USVCAM, that uses a phased microphone array and demonstrate novel vocal interactions under a resident-intruder paradigm. The extended applicability and usability of USVCAM may facilitate investigations of social behaviors and underlying physiological mechanisms.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 499
Author(s):  
Kalpana D. Acharya ◽  
Hye L. Noh ◽  
Madeline E. Graham ◽  
Sujin Suk ◽  
Randall H. Friedline ◽  
...  

A decrease in ovarian estrogens in postmenopausal women increases the risk of weight gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly, E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. Moreover, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore, Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated, with body weight and fat mass. These results suggest that changes in gut epithelial barrier and specific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic dysregulation. These findings provide support for the gut microbiota as a therapeutic target for treating estrogen-dependent metabolic disorders in women.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Jessica L Faulkner ◽  
Eric J Belin de Chantemele

Recent studies by our group demonstrated that leptin is a direct regulator of aldosterone secretion and increases blood pressure via sex-specific mechanisms involving leptin-mediated activation of the aldosterone-mineralocorticoid receptor signaling pathway in females and sympatho-activation in males. Although it is well accepted that females secrete more leptin and aldosterone than males, it is unknown whether leptin infusion raises blood pressure similarly in male and female mice and whether higher aldosterone levels sensitize females to salt-induced hypertension. We hypothesized that female mice would be more sensitive to leptin than males and also have a potentiated blood pressure rise in response to high salt diet compared to males. Male and female Balb/C mice were implanted with radiotelemeters for continuous measurement of mean arterial pressure (MAP) at 10 weeks of age. MAP was measured for seven days prior to feeding with a high-salt diet (HS, 4%NaCl) for seven days. Following a recovery period, animals were then implanted with osmotic minipumps containing leptin (0.9mg/kg/day) recorded for seven days. Baseline MAP was similar between males and females (101.3±2.9 vs 99.3±3.7 mmHg, n=4 and 5, respectively), however, HS diet resulted in a greater MAP increase in females (15.0±2.6 mmHg) compared to males (3.1±4.5 mmHg, P<0.05). MAP with leptin treatment was increased with leptin in females moreso than in males, however, this did not reach significance (6.8±5.8 vs 1.8±5.9 mmHg, respectively). This potential sex difference in blood pressure responses to leptin was not associated with changes in body weight (0.07±0.44 vs -0.22±0.2 g, respectively) nor changes in blood glucose (-19.67±15.06 vs -15.4±11.4 mg/dl, respectively) in males and females in response to leptin. In summary, female mice are more sensitive to HS diet-induced blood pressure increases than males. Females may be more sensitive to leptin-mediated blood pressure increases than males. Further investigation is needed to determine whether these sex differences in blood pressure responses to HS diet and leptin are mediated by aldosterone or other mechanisms.


2014 ◽  
Vol 74 (3 suppl 1) ◽  
pp. S171-S176
Author(s):  
E Dos Santos ◽  
RS Tokumaru ◽  
SLG Nogueira Filho ◽  
SSC Nogueira

Parent-offspring vocal communication, such as the isolation call, is one of the essential adaptations in mammals that adjust parental responsiveness. Thus, our aim was to test the hypothesis that the function of the capybara infants' whistle is to attract conspecifics. We designed a playback experiment to investigate the reaction of 20 adult capybaras (seven males and 13 females) to pups' whistle calls – recorded from unrelated offspring – or to bird song, as control. The adult capybaras promptly responded to playback of unrelated pup whistles, while ignoring the bird vocalisation. The adult capybaras took, on average, 2.6 ± 2.5 seconds (s) to show a response to the whistles, with no differences between males and females. However, females look longer (17.0 ± 12.9 s) than males (3.0 ± 7.2 s) toward the sound source when playing the pups' whistle playback. The females also tended to approach the playback source, while males showed just a momentary interruption of ongoing behaviour (feeding). Our results suggest that capybara pups' whistles function as the isolation call in this species, but gender influences the intensity of the response.


2021 ◽  
Author(s):  
Matthew S Binder ◽  
Zachary P Pranske ◽  
Joaquin N Lugo

Vocal communication is an essential behavior in mammals and is relevant to human neurodevelopmental conditions. Mice produce communicative vocalizations, known as ultrasonic vocalizations (USVs), that can be recorded with various programs. The Mouse Song Analyzer is an automated analysis system, while DeepSqueak is a semi-automated system. We used data from C57BL/6J, FVB.129, and FVB mice to compare whether the DeepSqueak and Mouse Song Analyzer systems measure a similar total number, duration, and fundamental frequency of USVs. We found that the two systems detected a similar quantity of USVs for FVB.129 mice (r= .90, p< .001), but displayed lower correlations for C57BL/6J (r= .76, p< .001) and FVB mice (r= .60, p< .001). We also found that DeepSqueak detected significantly more USVs for C57BL/6J mice than the Mouse Song Analyzer. The two systems detected a similar duration of USVs for C57BL/6J (r= .82, p< .001), but lower correlations for FVB.129 (r= .13, p< .001) and FVB mice (r= .51, p< .01) were found, with DeepSqueak detecting significantly more USVs per each strain. We found lower than acceptable correlations for fundamental frequency in C57BL/6J (r= .54, p< .01), FVB.129 (r= .76, p< .001), and FVB mice (r= .07, p= .76), with the Mouse Song Analyzer detecting a significantly higher fundamental frequency for FVB.129 mice. These findings demonstrate that the strain of mouse used significantly affects the number, duration, and fundamental frequency of USVs that are detected between programs. Overall, we found that DeepSqueak is more accurate than the Mouse Song Analyzer.


2020 ◽  
Author(s):  
Mayukh Choudhury ◽  
Clara A. Amegandjin ◽  
Vidya Jadhav ◽  
Josianne Nunes Carriço ◽  
Ariane Quintal ◽  
...  

ABSTRACTMutations in regulators of the Mechanistic Target Of Rapamycin Complex 1 (mTORC1), such as Tsc1/2, lead to neurodevelopmental disorders associated with autism, intellectual disabilities and epilepsy. Whereas the effects of mTORC1 signaling dysfunction within diverse cell types are likely critical for the onset of the diverse neurological symptoms associated with mutations in mTORC1 regulators, they are not well understood. In particular, the effects of mTORC1 dys-regulation in specific types of inhibitory interneurons are unclear.Here, we showed that Tsc1 haploinsufficiency in parvalbumin (PV)-positive GABAergic interneurons either in cortical organotypic cultures or in vivo caused a premature increase in their perisomatic innervations, followed by a striking loss in adult mice. This effects were accompanied by alterations of AMPK-dependent autophagy in pre-adolescent but not adult mice. PV cell-restricted Tsc1 mutant mice showed deficits in social behavior. Treatment with the mTOR inhibitor Rapamycin restricted to the third postnatal week was sufficient to permanently rescue deficits in both PV cell innervation and social behavior in adult conditional haploinsufficient mice. All together, these findings identify a novel role of Tsc1-mTORC1 signaling in the regulation of the developmental time course and maintenance of cortical PV cell connectivity and provide a mechanistic basis for the targeted rescue of autism-related behaviors in disorders associated with deregulated mTORC1 signaling.


2021 ◽  
Author(s):  
Taylor Lynne Rystrom ◽  
Romy C. Prawitt ◽  
S. Helene Richter ◽  
Norbert Sachser ◽  
Sylvia Kaiser

Social interactions among group members often lead to the formation of stable dominance hierarchies. Glucocorticoids (i.e. cortisol) have been proposed as an endocrine mechanism underlying social behavior, and previous studies have linked baseline as well as challenge glucocorticoid concentrations to dominance rank. Since the importance of rank on fitness differs between males and females, selection pressures acting on the underlying endocrine mechanisms may differ between the sexes. In male guinea pigs, for example, it is known that cortisol responsiveness mediates social behavior and that dominance rank and cortisol responsiveness are stable within individuals over time. It is unclear whether this is also the case for female guinea pigs. Thus the aim of this study was to investigate whether cortisol concentrations are repeatable in female guinea pigs and whether female rank is correlated to baseline cortisol concentrations or cortisol responsiveness. We show that cortisol responsiveness and dominance rank were significantly repeatable but not correlated in female guinea pigs. Furthermore, baseline cortisol was not repeatable and also did not correlate to dominance rank. Our results demonstrate that baseline cortisol and cortisol responsiveness represent different biological processes; cortisol responsiveness reflects a stable trait while baseline cortisol likely fluctuates with current state. Furthermore, cortisol responsiveness as a mediator of aggressive behavior and dominance acquisition might not be important for maintaining dominance hierarchies in stable groups of females displaying minimal aggression. Overall, this study reveals the remarkable stability of cortisol responsiveness and dominance rank in an adult female rodent and lays the groundwork for future investigations into the causes and consequences of this individual variation.


2021 ◽  
Vol 150 (4) ◽  
pp. A163-A164
Author(s):  
Christyana Kawar ◽  
Rachel S. Clein ◽  
Megan R. Warren ◽  
Joshua P. Neunuebel

Sign in / Sign up

Export Citation Format

Share Document